

2.4 - 2.485GHz

8TR1212

Features

- 2.4 2.485GHz Frequency Range
- High Efficiency Optimized for Battery Operation
- Delivers up to +10.6dBm Output Power at 3.3V
- 10.3mA at +10dBm Output Power at 3.3V
- Large Signal Gain 13.8dB at +10dBm Output Power
- 1.8 4.0V Operation
- Integrated PA, Bypass, T/R Switch
- -40°C to 125°C Extended Temperature Range
- 2mm x 2mm x 0.45mm 8-Pin DFN Package

Applications

- Bluetooth Low Energy (BLE) Devices
- IoT (Internet of Things) / M2M Connectivity
- Bluetooth Audio
- Bluetooth Mesh Networks
- Sports and Medical Wearables
- Consumer Electronics, Toys
- Smart Home Appliances
- Remote Controllers Wireless Sensor Nodes
- Beacons
- Proximity Sensors

Figure 1: Functional Block Diagram

Description

The 8TR1212 is a compact, highly integrated front-end RFIC (Radio Frequency Integrated Circuit) intended for Bluetooth Smart, 802.15.4 ZigBee, Thread and proprietary ISM wireless protocol systems in the 2.4GHz band.

The 8TR1212 is optimized for battery operation with enhanced efficiency, operating over a wide voltage supply range from 1.8V to 4.0V, suited for a wide array of applications including battery-powered wireless systems.

The 8TR1212 combines a transmit power amplifier (PA), Bypass, a single pole, double throw (SPDT) transmit / receive (T/R) switch (Figure 1) in a 2mm x 2mm x 0.45mm 8-pin DFN package. It also comes integrated with filter networks and input / output matching circuitry. The device delivers up to +10.6dBm saturated output power at a supply voltage of 3.3V.

The 8TR1212 is RoHS compliant, halogen-free and REACH Compliant. It is rated for Moisture Sensitivity Level 1 (MSL1), reflow at 260°C per JEDEC J-STD-020. Refer to IPC / JEDEC J-STD-020 for detailed solder reflow temperature and profile.

8-pin 2mm x 2mm x 0.45mm, DFN Package Figure 2: Package Type

Ordering Information

Part Number	Description
8TR1212	2.4GHz Front-End RFIC 2500pieces per Tape and Reel
8TR1212-EVB	Fully Tested and Characterize Evaluation Board
8TR1212-DWF	2.4GHz Front-End RFIC Die in Wafer Form

•website: <u>www.berex.com</u>

•email: sales@berex.com

Pin Descriptions

Table 1: 8TR1212 Pin Signal Descriptions

Pin	Name	Descriptions
1	TXEN	Control Logic Pin
2	GND	Ground
3	RXEN	Control Logic Pin
4	TXRX	Transmit/Receive Port (DC shorted to GND)
5	ANT	Antenna Port (DC shorted to GND)
6	GND	Ground
7	GND	Ground
8	VDD	DC Voltage Supply
EXPOSED PAD		Exposed pad should be connected to GND.

2.4 - 2.485GHz

General Specifications

Table 2: 8TR1212 Absolute Maximum Ratings

Parameter		Units	Minimum	Maximum	Remark
Supply Voltage (VDD)		V	0	4.4	
Control Logic Pin	(TXEN, RXEN)	V	0	VDD	
Transmit Input Power at TXRX Port		dBm		10	
Bypass Input power at ANT Port		dBm		20	
Storage Temperature		°C	-40	150	
ESD - HBM*	ESD - HBM* All pins			±3000	

Note: Sustained operation at or above the Absolute Maximum Ratings for any single or combinations of the parameters above may result in permanent damage to the device and is not recommended. All Maximum RF Input Power Ratings assume 50Ω terminal impedance. *Electrostatic discharge Human Body Model(HBM) Reference Document: ANSI/ESDA/JEDEC JS-001-2017

Table 3: 8TR1212 Recommended Operating Conditions

Parameter	Units	Minimum	Typical	Maximum
Supply Voltage (VDD, recommended)	V	1.8V*	3.3	4
Control Pin - Logic High State (TXEN, RXEN)	V	1.2		VDD**
Control Pin - Logic Low State (TXEN, RXEN)	V	0		0.5
Operating Frequency Range	GHz	2.4		2.485
Operating Temperature	°C	-40	25	125

* Functional working with degraded performance for the supply voltage range 1.8V to 2.2V.

** For Control Voltages > 3.0V, a 10k Ω series resistor should be used at the Control Logic Pins.

2.4 - 2.485GHz

8TR1212

Table 4: 8TR1212 Transmit Electrical Specifications

(VDD = 3.3V, TXEN = High, RXEN = Low or High, T_{Amblent} = 25°C, Excluding PCB and Connector Loss, Unless Otherwise Noted)

Parameter	Units	Min	Тур	Max	Test Conditions
Saturated Output Power	dBm		9.8 10.6 12.1		VDD 3.0V VDD 3.3V VDD 4.0V
Large-Signal Gain	dB		13.8		+10dBm Pout
Current Consumption	mA		10.3		+10dBm Pout
Tx Quiescent Current	mA		2.57		No RF applied
Second Harmonic	dBm/MHz		-28.1		+10dBm Pout
Third Harmonic	dBm/MHz		-40.8		Without external harmonic filter
Input Return Loss	dB		20		At TXRX port
Output Return Loss	dB		13		At ANT port
Load VSWR for Stability			6:1		All Non-harmonic Spurs Less than –55dBm/MHz Up to +10dBm
Load VSWR for Ruggedness			10:1		No Damage

Table 5: 8TR1212 Bypass Mode Specifications

(VDD = 3.3V, TXEN = Low, RXEN = High, T_{Ambient} = 25°C, Excluding PCB and Connector Loss, Unless Otherwise Noted)

Parameter	Units	Min	Тур	Max	Test Conditions
Bypass Current	uA		1		
Insertion Loss	dB		1.4		

2.4 - 2.485GHz

8TR1212

Table 6: 8TR1212 Switching Time Specifications

(VDD = 3.3V, T_{Ambient} = 25°C, Unless Otherwise Noted)

Parameter	Units	Min	Тур	Max	Test Conditions
TX to Bypass	nsec		300		From 50% of TXEN to 90% of Bypass power
TX to Shutdown	nsec		300		From 50% of TXEN to 10% of TX power
Bypass to TX	nsec		600		From 50% of TXEN to 90% of TX power
Bypass to Shutdown	nsec		300		From 50% of RXEN to 10% of Bypass power
Shutdown to TX	nsec		600		From 50% of TXEN to 90% of TX power
Shutdown to Bypass	nsec		300		From 50% of RXEN to 90% of Bypass power

Table 7: 8TR1212 Control Logic

"1" = Logic High, "0" = Logic Low, All Control logic pins must have a state defined as either "0" or "1".

TXEN	RXEN	Operational Mode
0	0	Shutdown Mode
0	1	Bypass Mode
1	0 or 1	TX Mode

ANT

C3

DNI

VDD

C5

1 uF

C2

DNI

8TR1212

Application Notes

The 8TR1212 Application note provides detailed descriptions and test data over various operating conditions. Visit <u>www.berex.com</u> or contact BeRex at <u>sales@berex.com</u> to request additional documentation.

Application Schematic and PCB Layout

Figure 4: 8TR1212 Reference Design Schematic and PCB Layout

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

LE230224

2.4 - 2.485GHz

Package Dimensions

TOP VIEW

SIDE VIEW

BOTTOM VIEW

	MINIMUM	NOMINAL	MAXIMUM		MINIMUM	NOMINAL	MAXIMUM
Α	0.41	0.45	0.50	К	0.20		
A1	0.00	0.02	0.05	L	0.10	0.20	0.30
A3		0.127 Ref		aaa		0.05	
Ь	0.15	0.20	0.25	bbb	0.10		
D		2.00 BSC		CCC		0.10	
E		2.00 BSC		ddd		0.05	
e		0.50 BSC		eee		0.08	
D2	1.00	1.10	1.20	N		8	
E2	1.50	1.60	1.70	NE		4	

Figure 6: 8TR1212 Package Dimensions

BeRex

Preliminary Datasheet

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

8TR1212

2.4GHz ZigBee / Thread / Bluetooth Smart Front End RFIC

2.4 - 2.485GHz

Package Marking

Note: The part marking: 12C represents the Product Part Number: 8TR1212.

Due to the size limitations of this package, only three (3) characters can be marked on each of two (2) rows. Therefore the Product Part Number is represented in the part marking by a 3-character code.

Figure 7: 8TR1212 Typical Part Marking

ESD Handling Information

Electro Static Discharge (ESD) can cause immediate (or latent) failures in semiconductor Integrated Circuits (ICs). BeRex, Inc. RFIC products are designed with integral ESD protection structures, and all IC products are tested to meet industry standards for ESD event survival. Users must adhere to all precautions for handling ESD sensitive devices throughout the manufacturing, test, shipping, handling, or operational processes, and during field service operations in order to achieve optimum system performance and life expectancy. Production quantities of this product are shipped in a standard tape and reel format.

RoHS Compliance 🕲 🎯

This part is compliant with Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This part is lead-free, halogen-free and compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1% (w/w) in each component of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

2.4 - 2.485GHz

8TR1212

Tape & Reel

Figure 8: 8TR1212 Tape and Reel Dimension

BeRex

•email: <u>sales@berex.com</u>

9