

2.4 - 2.5GHz

Features

- 2.4 2.5GHz Frequency Range
- High Functionality Front-End RF Integrated Circuit
- Integrated PA, LNA, Bypass, T/R Switch
- Low Current Optimized for Battery Operated IoT
- +13dBm Output Power at 3.0V, Up to +15dBm, 3.6V
- 23mA at +13dBm Output Power
- 2.3dB LNA Noise Figure
- Low Bi-Directional Bypass Insertion Loss
- Ultra-Low Bypass Current
- Filter Networks, Input / Output Matching
- 2mm x 2mm x 0.45mm QFN-16 Package
- -40°C to 105°C Temperature Range

Applications

- IoT (Internet of Things) / M2M Connectivity
- Sports and Medical Wearables
- Consumer Electronics, Toys
- Smart Home Appliances, Remote Controllers
- Wireless Sensor Nodes
- Beacons
- Proximity Sensors
- Range Extenders

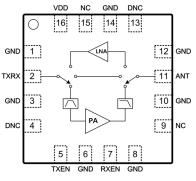


Figure 1: Functional Block Diagram

Description

The 8TR8211 is a compact, highly integrated front-end RFIC (Radio Frequency Integrated Circuit) intended for range extension of proprietary ISM wireless systems in the 2.4GHz band.

The 8TR8211 is optimized for battery operation with enhanced efficiency operating over a wide voltage supply range from 2.7V to 3.6V, suited for a wide array of applications including battery powered wireless systems.

The 8TR8211 combines a power amplifier (PA), low noise amplifier (LNA), a transmit / receive (T/R) switch, (Figure 1), in a 2mm x 2mm x 0.45mm 16-pin QFN package. It also comes integrated with filter networks, and input / output matching circuitry.

The 8TR8211 is RoHS compliant, halogen-free, and REACH Compliant. It is rated for Moisture Sensitivity Level 1 (MSL1), reflow at 260°C per JEDEC J-STD-020. Refer to IPC/JEDEC J-STD-020 for detailed solder reflow temperature and profile.

16-Lead 2mm x 2mm x 0.45mm, QFN Package Figure 2: Package Type

Ordering Information

Part Number	Description
8TR8211	2.4GHz Front-End RFIC 2500 pieces per Tape and Reel
8TR8211-EVB	Fully Tested and Characterize Evaluation Board
8TR8211-DWF	2.4GHz Front-End RFIC Die in Wafer Form

•website: <u>www.berex.com</u>

•email: sales@berex.com

Pin Descriptions

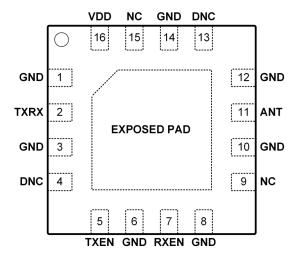


Figure 3 : Pin Description (Top View)

Table 1: 8TR8211 Pin Signal Descriptions

Pin	Name	Description	Pin	Name	Description
1	GND	Ground	9	NC	Not connected internally
2	TXRX	Transmit/Receive Port (DC shorted to GND)	10	GND	Ground
3	GND	Ground	11	ANT	Antenna Port (DC shorted to GND)
4	DNC	Do Not Connect	12	GND	Ground
5	TXEN	Control Logic Pin	13	DNC	Do Not Connect
6	GND	Ground	14	GND	Ground
7	RXEN	Control Logic Pin	15	NC	Not connected internally
8	GND	Ground	16	VDD	DC Voltage Supply
EXPOS	ED PAD	Exposed pad should be connected to GND.			

8TR8211

2.4 - 2.5GHz

2.4 - 2.5GHz

General Specifications

Table 2: 8TR8211 Absolute Maximum Ratings

Parameter	Units	Minimum	Maximum
Supply Voltage (VDD)	V	0	3.7
Control Logic Pin (TXEN, RXEN)	V	0	VDD
Transmit Output Power at ANT Port	dBm		16
Receive Input power at ANT Port	dBm		5
Bypass Input power at ANT Port	dBm		20
TXRX Port Input Power	dBm		10
Storage Temperature	°C	-40	150

Note: Sustained operation at or above the Absolute Maximum Ratings for any single or combinations of the above parameters may result in permanent damage to the device and is not recommended. All Maximum RF Input Power Ratings assume 50Ω terminal impedance.

Table 3: 8TR8211 Recommended Operating Conditions

Parameter	Units	Minimum	Typical	Maximum
Supply Voltage (VDD, recommended)	V	2.7	3.0	3.6
Supply Voltage (VDD, extend supply voltage)**	v	1.8		3.6
Control Pin - Logic High State (TXEN, RXEN)	v	1.2		VDD*
Control Pin - Logic Low State (TXEN, RXEN)	v	0		0.4
Control Pin Current (Logic High, 1.8V)	uA		0.2	
Operating Frequency Range	GHz	2.4		2.5
Operating Temperature	°C	-40	25	105

*For Control Voltages > 3.0V, a 10k Ω series resistor should be used at the Control Logic Pins.

**Functional working with degraded performance for the supply voltage range 1.8V to 2.7V.

Table 4: 8TR8211 Transmit Electrical Specifications

(VDD = 3.0V, T_{Ambient}= 25°C, With External Harmonic Filter, Excluding PCB and Connector Loss, Unless Otherwise Noted)

Parameter	Units	Min	Тур	Max	Test Conditions
Frequency Range	GHz	2.4		2.5	
			14		VDD: 3.3V
Saturated Output Power	dBm		13		VDD: 3.0V
			12		VDD: 2.7V
Large-Signal Gain	dB		11		+13dBm Pout
Current Consumption			15		+10dBm Pout
Current Consumption	mA		23		+13dBm Pout
Tx Quiescent Current	mA		5		No RF Applied
Second Harmonic	dBm/MHz		-40		Up to +14dBm with
Third Harmonic	dBm/MHz		-55		Harmonic Filter as Specified
Input Return Loss	dB		-10		
Load VSWR for Stability			6:1		All Non-harmonic Spurs Less than -43dBm/MHz Up to +14dBm
Load VSWR for Ruggedness			10:1		No Damage

BeRex

•email: sales@berex.com

Specifications and information are subject to change without notice.

BeRex is a trademark of BeRex. All other trademarks are the property of their respective owners. © 2021 BeRex

2.4 - 2.5GHz

Table 5: 8TR8211 Receive Electrical Specifications

(VDD = 3.0V, T_{Ambient}= 25°C, With External Harmonic Filter, Excluding PCB and Connector Loss, Unless Otherwise Noted)

Parameter	Units	Min	Тур	Max	Test Conditions
Frequency Range	GHz	2.4		2.5	
Small-Signal Gain	dB		13		
Current Consumption	mA		9		
Noise Figure	dB		2.3		
Input P1dB	dBm		-8		
Input IP3	dBm		0		
Input Return Loss	dB		-10		
Output Return Loss	dB		-5		

Table 6: 8TR8211 Bi-Directional Bypass Electrical Specifications

(VDD = 3.0V, T_{Ambient}= 25°C, With External Harmonic Filter, Excluding PCB and Connector Loss, Unless Otherwise Noted)

Parameter	Units	Min	Тур	Max	Test Conditions
Frequency Range	GHz	2.4		2.5	
Bypass Insertion Loss	dB		2.6		Between TXRX and ANT Ports
Durana Current	uA		0.6		
Bypass Current			0.5		VDD: 2.7V

Table 7: 8TR8211 Switching Time Specifications

(VDD = 3.0V, T_{Ambient}= 25°C, With External Harmonic Filter, Unless Otherwise Noted)

Parameter	Units	Min	Тур	Max	Test Conditions
TX to RX	usec		0.65		From 50% of RXEN to 90% of RX power
TX to Bypass	usec		0.5		From 50% of TXEN to 10% RF
RX to TX	usec		0.35		From 50% of TXEN to 90% RF
RX to Bypass	usec		0.45		From 50% of RXEN to 10% RF
Bypass to TX	usec		0.4		From 50% of TXEN to 90% RF
Bypass to RX	usec		0.85		From 50% of RXEN to 90% RF

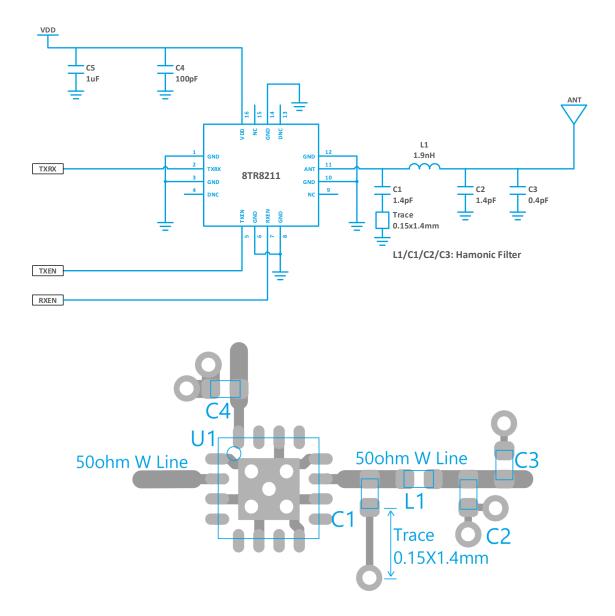
Table 8: 8TR8211 Control Logic

"1" = Logic High, "0" = Logic Low

TXEN	RXEN	Operational Mode
0	0	Bypass Mode*
0	1	RX Mode
1	0	TX Mode
1	1	TX Mode

*The Bypass Mode feature providers an ultra-low current consumption, as in a conventional Sleep Mode.

•website: <u>www.berex.com</u>


•email: <u>sales@berex.com</u>

Application Notes

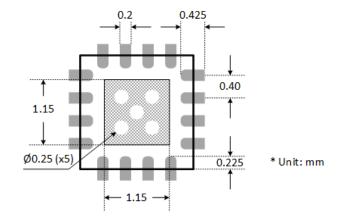
The 8TR8211 Application note provides detailed descriptions and test data over various operating conditions. Visit www.berex.com or contact BeRex at sales@berex.com to request additional documentation.

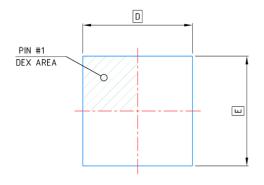
Application Schematic and PCB Layout

Figure 4: 8TR8211 Reference Design Schematic and PCB Layout

BeRex

•website: <u>www.berex.com</u>


•email: <u>sales@berex.com</u>


2.4 - 2.5GHz

8TR8211

Package Dimensions

TOP VIEW

NOM.

0.45

0.02

0.127 Ref

0.20

2.00 BSC

2.00 BSC 0.40 BSC

1.15

1.15

0.225

16

MAX.

0.50

0.05

0.25

1.25

1.25

0.325

MIN.

0.41

0.00

0.15

1.00

1.00

0.20 0.125

А

A1

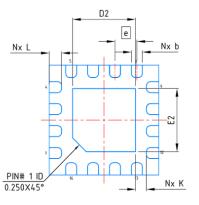
A3

b

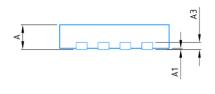
D

Е

е


D2

E2


Κ

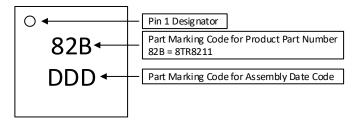
L

Ν

BOTTOM VIEW

SIDE VIEW

Figure 6: 8TR8211 Package Dimension


•website: <u>www.berex.com</u> •emai

8TR8211

2.4 - 2.5GHz

Package Marking

Note: The part marking: 82B represents the Product Part Number: 8TR8211.

Due to the size limitations of this package, only three (3) characters can be marked on each of two (2) rows. Therefore the Product Part Number is represented in the part marking by a 3-character code.

Figure 7: 8TR8211 Typical Part Marking

ESD Handling Information

Electro Static Discharge (ESD) can cause immediate (or latent) failures in semiconductor Integrated Circuits (ICs). BeRex, Inc. RFIC products are designed with integral ESD protection structures, and all IC products are tested to meet industry standards for ESD event survival. Users must adhere to all precautions for handling ESD sensitive devices throughout the manufacturing, test, shipping, handling, or operational processes, and during field service operations in order to achieve optimum system performance and life expectancy. Production quantities of this product are shipped in a standard tape and reel format.

RoHS Compliance 🕲 🌀

This part is compliant with Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This part is lead-free, halogen-free and compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each component of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

8TR8211

2.4 - 2.5GHz

Tape & Reel

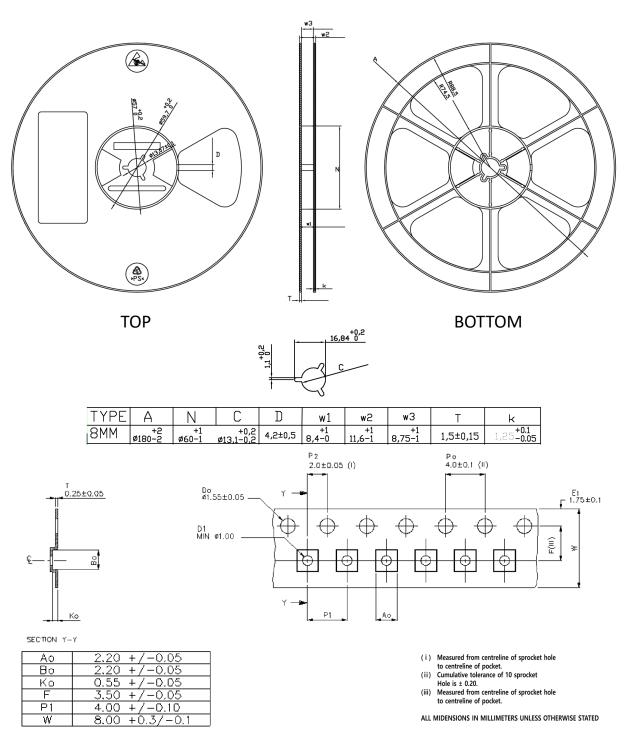


Figure 8: 8TR8211 Tape and Reel Dimension

•email: <u>sales@berex.com</u>

8