

2.4 - 2.5GHz

Features

- Single-Chip CMOS Front-End IC
- 4-Port Antenna Switch for Angle-of-Arrival (AoA) / Angle-of-Departure (AoD) Location Detection
- 2.4 2.5GHz Frequency Range
- Nearly Constant Tx Output Power over VSWR
- Intended for BLE v5.1 Specification
- Up to 5dBm EDR Output Power
- Transmit Power Stable over Antenna Mismatch
- Low Noise Figure, and Low-Current LNA Mode
- Throttle-down mode for fast switching
- Temperature Range: -40°C to 125°C
- 2.7V to 3.6V Operating Voltage
- 3mm x 3mm x0.55mm 20-pin QFN Package
- Die in Wafer Form Available

Applications

- AoA/AoD Indoor Location and Position Tracking
- IoT Nodes, Gateways, and Beacons
- M2M (Machine to Machine) Wireless
- Bluetooth, BLE 5.1, ZigBee, Thread, ANT+
- Smart: Home, City, Lighting, and Energy
- Industrial and Building Automation
- Consumer and Wearable Wireless Electronics

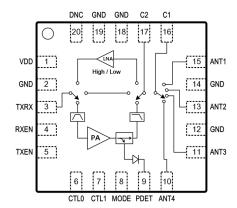


Figure 1: Functional Block Diagram

Description

The 8TR8241 is a Single-Chip CMOS RF Front-End IC that combines: Power Amplifier, Low Noise Amplifier, Bypass, Transmit / Receive Switch, 4-Port Antenna Switch, Directional Power Detector, and Matching Network. Transmitted Power is stable over Antenna mismatch at any phase angle. It is intended for Bluetooth®, Zigbee, Thread, as well as ANT/ANT+, and Proprietary ISM Wireless Systems in the 2.4GHz Band. Wide operating Supply Voltage (2.7V – 3.6V) and wide Temperature Range (-40°C to 125°C) support battery-powered wireless systems.

The 8TR8241 is RoHS compliant, halogen-free, and REACH Compliant. It is rated for Moisture Sensitivity Level 1 (MSL1), reflow at 260°C per JEDEC J-STD-020. Refer to IPC/JEDEC J-STD-020 for detailed solder reflow temperature and profile.

20-Lead 3mm x3mm x 0.55mm, QFN Package

Figure 2: Package Type

Ordering Information

Part Number	Description
8TR8241	2.4GHz Front-End RFIC in 3mm x 3mm x 0.55mm 20-Pin QFN
8TR8241-EVB	Fully Tested and Characterized Evaluation Board
8TR8241-DWF	2.4GHz Front-End RFIC Die in Wafer Form

2.4 - 2.5GHz

Pin Descriptions

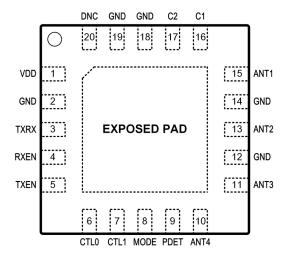


Figure 3:Pin Description (Top View)

Table 1: 8TR8241 Pin Signal Description

Pin	Name	Description	Pin	Name	Description
1	VDD	DC Voltage Supply	11	ANT3	Antenna 3 Port (DC shorted to GND)
2	GND	Ground	12	GND	Ground
3	TXRX	Transmit /Receive Port (DC shorted to GND)	13	ANT2	Antenna 2 Port (DC shorted to GND)
4	RXEN	Control Logic Pin	14	GND	Ground
5	TXEN	Control Logic Pin	15	ANT1	Antenna 1 Port (DC shorted to GND)
6	CTL0	Control Logic Pin	16	C1	Internal Filter Port* (DC shorted to GND)
7	CTL1	Control Logic Pin	17	C2	Internal Filter Port* (DC shorted to GND)
8	MODE	Control Logic Pin	18	GND	Ground
9	PDET	Power detector voltage	19	GND	Ground
10	ANT4	Antenna 4 Port (DC shorted to GND)	20	DNC	Do Not Connect
EXPOS	EXPOSED PAD Exposed pad should be connected to GND.				

2.4 - 2.5GHz

General Specifications

Table 2: 8TR8241 Absolute Maximum Ratings

Parameter	Units	Minimum	Maximum
Supply Voltage (VDD)	V	0	3.7
Supply Current (Idd)	mA		50
Control Logic Pin (TXEN, RXEN, MODE, CTL0, CTL1)	V	0	VDD
Transmit Input Power at TXRX Port	dBm		10
Receive Input Power at ANT Port	dBm		7
Bypass Mode Input Power	dBm		20
Storage Temperature	°C	-40	150

Note: Sustained operation at or above the Absolute Maximum Ratings for any single or combinations of the above parameters may result in permanent damage to the device and is not recommended. All Maximum RF Input Power Ratings assume 50Ω terminal impedance.

Table 3: 8TR8241 Recommended Operating Conditions

Parameter	Units	Minimum	Typical	Maximum
Supply Voltage (VDD, recommended)	V	2.7	3.3	3.6
Supply Voltage (VDD, extend supply voltage)**	V	1.8		3.6
Control Pin - Logic High State	V	1.2		VDD*
Control Pin - Logic Low State	V	0		0.4
Operating Frequency Range	GHz	2.4		2.5
Operating Temperature	°C	-40	25	125

^{*} For Control Voltages > 3.0V, a $10k\Omega$ series resistor should be used at the Control Logic Pins.

 $^{^{**}}$ Functional working with degraded performance for the supply voltage range 1.8V to 2.7V.

2.4 - 2.5GHz

Table 4: 8TR8241 Transmit Electrical Specifications

(VDD = 3.3V, T_{Ambient} = 25°C, With External Harmonic Filter, Excluding PCB and Connector Loss, Unless Otherwise Noted)

Parameter	Units	Min	Тур	Max	Test Conditions
Frequency Range	GHz	2.4		2.5	
			12		VDD: 2.7V
Saturated Output Power	dBm		13		VDD: 3.0V
			14		VDD: 3.3V
EDR Spectral Mask	dBm		5		Spectral Mask compliant, 3Mbps EDR signal
			11		VDD: 2.7V, 10dBm Pout
Large-Signal Gain	dB		11		VDD: 3.0V, 10dBm Pout
			11		VDD: 3.3V, 10dBm Pout
TX Large-Signal Gain variation over Antennas	dB			0.5	
Command Commandian	mA		17		10dBm Pout
Current Consumption	IIIA		22		12dBm Pout
TX Quiescent Current	mA		5		No RF applied
Second Harmonic	dBm/MHz		-45		Lie to 142 d Dec Outroit a suisi
Third Harmonic	dBm/MHz		-45		Up to +12dBm Output power
Dougr Datastar Valtage (DDET)*	V		0.4		0dBm Pout
Power Detector Voltage (PDET)*	V		0.9		12dBm Pout
Input Return Loss	dB		-9		
Output Return Loss	dB		-9		
Load VSWR for Stability			6:1		All Non-harmonic Spurs Less than -50dBm/MHz
Load VSWR for Ruggedness			10:1		No Damage at +10dBm input power

^{*}Make the PDET pin No Connect if the power detector function is not used.

Table 5: 8TR8241 Receive and Bypass Electrical Specifications

(VDD = 3.3V, T_{Ambient} = 25°C, With External Harmonic Filter, Excluding PCB and Connector Loss, Unless Otherwise Noted)

Parameter	Units	Min	Тур	Max	Test Conditions
Operating Frequency Band	GHz	2.4		2.5	
RX Small Signal Gain	dB		13		RX High Gain Mode
NA SIIIdii Sigiidi Gaiii	ив		11		RX Low Current Mode
RX Small-Signal Gain variation over Antenna	dB		0.5		
RX Current Consumption	mA		9.5		RX High Gain Mode
KX Current Consumption	IIIA		6		RX Low Current Mode
Noise Figure	dB		3.8		RX High Gain Mode
Noise rigure	αв		4.1		RX Low Current Mode
RX Input P1dB	dBm		-10		
RX Input Return Loss	dB		-7		
RX Output Return Loss	dB		-11		
Bypass Insertion Loss	dB		5		
Bypass Current Consumption	uA		4		

BeRex ●website: <u>www.berex.com</u>

•email: sales@berex.com

2.4 - 2.5GHz

Table 6: 8TR8241 Switching Time Specifications

(VDD = 3.3V, T_{Ambient} = 25°C, With External Harmonic Filter, Unless Otherwise Noted)

Parameter	Units	Min	Тур	Max	Test Conditions
TX to RX	usec		0.45		From 50% of RXEN to 90% RX Power
Shutdown to RX	usec		0.48		From 50% of MODE to 90% RX Power
Bypass to RX	usec		0.50		From 50% of RXEN to 90% RX Power
RX to TX	usec		0.42		From 50% of TXEN to 90% RF
Shutdown to TX	usec		0.43		From 50% of MODE to 90% RF
RX to Bypass	usec		0.27		From 50% of TXEN to 90% RF
Shutdown to Bypass	usec		0.28		From 50% of MODE to 90% RF
Throttle-Down*	usec	0.05		0.38	

^{*} Refer to Application Note for the explanation on Throttle-Down.

Table 7: 8TR8241 Antenna Switch Specifications

(VDD = 3.3V, T_{Ambient} = 25°C, With External Harmonic Filter, Excluding PCB and Connector Loss, Unless Otherwise Noted)

Parameter	Units	Min	Тур	Max	Test Conditions
Antenna Switch Insertion Loss	dB		1		Without harmonic filter
Antenna Switch Isolation	dB		35		Ant1 to Ant2, Ant3 and Ant4
Antonia Civitalia Tima	usec		0.45		From 50% of CTL0/CTL1 to 90% RF*
Antenna Switching Time		usec		0.12	

^{*} RF power is already turned on (either TX or RX)

Table 8: 8TR8241 Leakage Current Specifications

(VDD = 3.3V, T_{Ambient}= 25°C, Unless Otherwise Noted)

Parameter	Units	Min	Тур	Max	Test Conditions
Shutdown Mode VDD Leakage Current	uA		1.0		
Control Pin Current (Logic High, 1.8V)	uA		0.1		

Table 9: 8TR8241 Control Logic

Operation Mode control Logic Table

"1" = Logic High, "0" = Logic Low

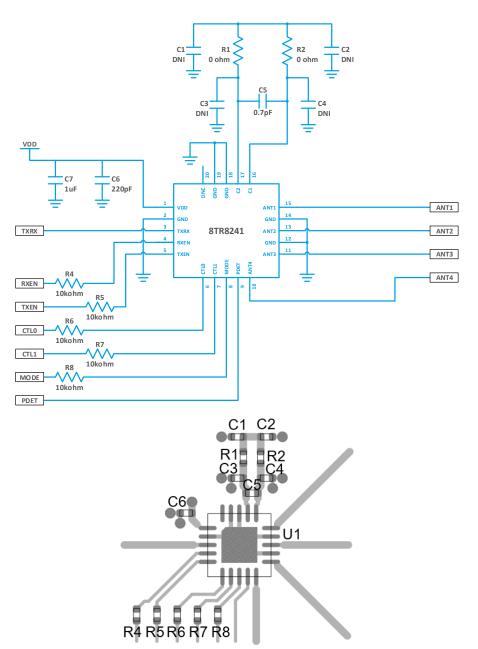
TXEN	RXEN	MODE	Operational Mode
0	0	0	Shutdown
0	0	1	Bypass*
0	1	0	RX High Gain mode
0	1	1	RX Low Current mode
1	0	0	TX without Det
1	0	1	Throttle-Down, without Det
1	1	0	TX with Det
1	1	1	Throttle-Down, with Det

^{*} The Bypass Mode consumes no more current than the shutdown mode.

Antenna Select Logic Table

CTL0	CTL1	Operational Mode
0	0	ANT1
0	1	ANT2
1	0	ANT3
1	1	ANT4

BeRex ●website: <u>www.berex.com</u> ●email: <u>sales@berex.com</u> 5



2.4 - 2.5GHz

Application Notes

The 8TR8241 Application note provides detailed descriptions and test data over various operating conditions. Visit www.berex.com or contact BeRex at sales@berex.com to request additional documentation.

Application Schematic and PCB Layout

Note: Refer to 8TR8241 application note for more information.

Figure 4: 8TR8241 Reference Design Schematic and PCB Layout

2.4 - 2.5GHz

Package Dimensions

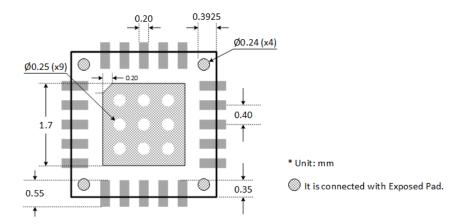


Figure 5: 8TR8241 Recommended PCB Layout Footprint

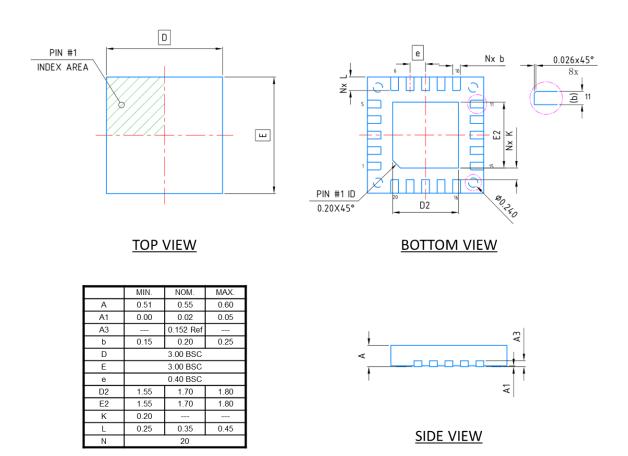
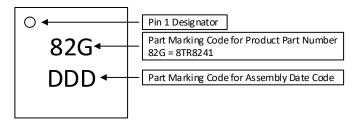



Figure 6: 8TR8241 Package Dimension

2.4 - 2.5GHz

Package Marking

Note: The part marking: 82G represents the Product Part Number: 8TR8241.

Due to the size limitations of this package, only three (3) characters can be marked on each of two (2) rows. Therefore the Product Part Number is represented in the part marking by a 3-character code.

Figure 7: 8TR8241 Part Marking Code

ESD Handling Information

Electro Static Discharge (ESD) can cause immediate (or latent) failures in semiconductor Integrated Circuits (ICs). BeRex, Inc. RFIC products are designed with integral ESD protection structures, and all IC products are tested to meet industry standards for ESD event survival. Users must adhere to all precautions for handling ESD sensitive devices throughout the manufacturing, test, shipping, handling, or operational processes, and during field service operations in order to achieve optimum system performance and life expectancy. Production quantities of this product are shipped in a standard tape and reel format.

RoHS Compliance 🕦 🏡 📀

This part is compliant with Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This part is lead-free, halogen-free and compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each component of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

2.4 - 2.5GHz

Tape & Reel

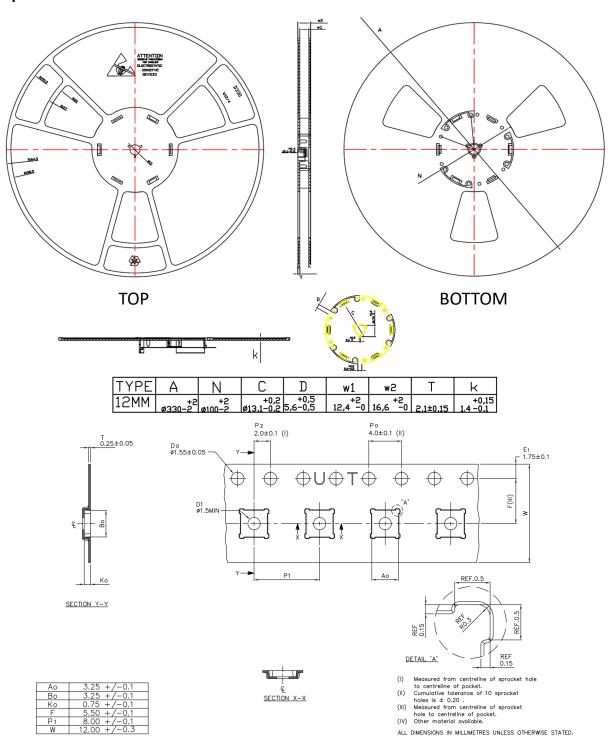


Figure 8: 8TR8241 Tape and Reel Dimension

•email: sales@berex.com