

1MHz-4000MHz

Device Features

- 6-bit Serial & Parallel Interface
- 31.5 dB Control Range 0.5 dB step
- No positive glitch
- 2.7 V to 5.5 V supply
- 1.8 V or 3.3 V control logic
- Any bit Attenuation Error < ±0.6 dB up to 3GHz
- Low Insertion Loss

0.7dB @ 1MHz

1.0 dB @ 1GHz

1.3 dB @ 2GHz

1.7 dB @ 3GHz

2.6 dB @ 4GHz

- High linearity IIP3 > +55 dBm
- Input 0.1dB Compression (P0.1dB) 31dBm
- Programming modes
 - Direct parallel
 - Latched parallel
 - Serial
- Support function power up state selection with PUP1,2 pin
- Stable Integral Non-Linearity over temperature
- Low Current Consumption 150 µA typical
- -40 °C to +105 °C operating temperature
- ESD rating: Class2 (2KV HBM)
- Lead-free/RoHS-compliant 20-lead 4x4mm QFN SMT package

Product Description

The BDA4601 is a 50Ω digital step attenuator model which provides adjustable attenuation from 0 to 31.5 dB in 0.5 dB steps. The control is a 6-bit serial interface and parallel interface.

Covering 1MHz to 4.0 GHz, the insertion loss is less than 1.5 dB typical. And Offering the High linearity, low power consumption, and low insertion loss.

The device features safe state transitions with No positive Glitch technology. and is optimized for excellent step accuracy

The RF input and output are internally matched to 50 Ω and do not require any external matching components. The design is bidirectional; therefore, the RF input and output are interchangeable.

This DSA does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor.

It is packaged in a RoHS-compliant with QFN surface mount package.

20-lead 4mm x 4 mm x 0.9mm QFN

Figure 1. Package Type

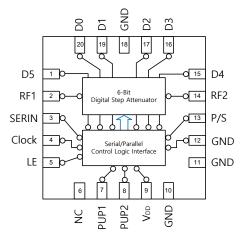


Figure 2. Functional Block Diagram

Application

- Cellular Base station/Repeater Infrastructure
- **Digital Pre-Distortion**
- Point to Point
- Test Equipment and sensors
- Military Wireless system
- Cable Infrastructure
- General purpose Wireless

1MHz-4000MHz

Table 1. Electrical Specifications¹

Parai	meter	Cond	dition	Frequency	Min	Тур	Max	Unit
Operational Fi	equency Range				1		4000	MHz
Insertion Loss ²						1		dB
		Attonuction	. (ATT) = 0dp	2GHz		1.3		dB
		Attenuation	n (ATT) = 0dB	3GHz		1.7		dB
				4GHz		2.6		dB
Range		0.5d	B step			0 - 31.5		dB
				1MHz - 1GHz	±(0.15 +	· 1% of attenuatio	on state)	
Attenuation	Accuracy	Any hit or hi	t combination	> 1 - 2.2GHz	±(0.15 +	2% of attenuation	on state)	dB
	Accuracy	Ally bit of bi	COMBINATION	> 2.2 - 3GHz	±(0.15+	5% of attenuation	on state)	
				> 3 - 4GHz	±(0.15+	6% of attenuation	n state)	
	Input Return			1 - 2GHz		18		
Return loss	Loss	ΔΤΤ	= OdB	> 2 - 4GHz		13		dB
Neturi 1033	Output Return	ATT= 0dB		1 - 2GHz		17		ав
Loss	Loss			> 2 - 4GHz		13		
				1GHz		10		
Relativ	e Phase	ATT = 0dB		2GHz		20		degree
Relativ	Relative Phase		ATT - OUD			32		- uegree
1				4GHz		40		
	Input 0.1dB Compression	ATT	= 0dB	1.95GHz		31		dBm
	point	ATT	= OdB	3.5GHz		31		dBm
			ATT = 0.0dB RFin = RF1			61		
		Pin = +15dBm/tone	ATT = 0.0dB RFin = RF2	1.95GHz -		57		- dBm
		$\Delta f = 10KHz$	ATT= 15.5dB RFin = RF1	1.95GHZ		59		ивт
Input Linearity	Input IP3		ATT = 15.5dB RFin = RF2			57		
			ATT = 0.0dB RFin = RF1			59		
		Pin = +15dBm/tone	ATT = 0.0dB RFin = RF2	3.5GHz		60		dBm
		$\Delta f = 10KHz$	ATT = 15.5dB RFin = RF1	3.3002		63		UBIII
			ATT = 15.5dB RFin = RF2			61		
Switch	ing time	50% CTRL to	90% or 10% RF			500	800	ns
Maximum S	purious level	Measured at D	SA RF1,RF2 ports			< -120		dBm

^{1.} Device performance $_$ measured on a BeRex Evaluation board Kit at 25°C, 50 Ω system, VDD=+3.3V

^{2.} All data has PCB insertion loss de-embedded

1MHz-4000MHz

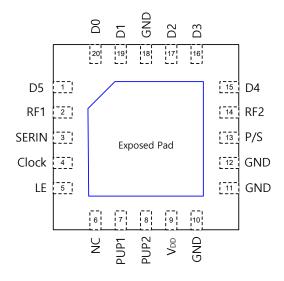
Table 2. Recommended operating Condition

Parameter		Symbol	Condition	Min	Тур	Max	Unit
Supply Voltages		V_{DD}		2.7		5.5	V
Supply Current		I _{DD}			150	360	μΑ
Digital Control Input	High	V _{CTLH}	V _{DD} =3.3V or 5V	1.17		3.6	V
Digital Control Input	Low	V _{CTLL}	V _{DD} =3.3V or 5V	-0.3		0.6	V
Operating Temperature	Range	T _{case}	Exposed Paddle	-40		105	°C
RF Max Input Powe	RF Max Input Power		RF1 or RF2, CW			23	dBm
Impedance	Impedance		Single ended		50		Ω

Specifications are not guaranteed over all recommended operating conditions.

Table 3. Absolute Maximum Ratings

Paramet	er	Symbol	Min	Тур	Max	Unit
Supply Voltage		V_{DD}	-0.3		5.5	V
Digital input voltage		V _{CTL}	-0.3		3.6	V
Maximum input power		P _{IN_CWMAX}			31	dBm
	Junction	TJ			140	℃
Temperature	Storage	T _{ST}	-65		150	℃
	Reflow	T _R			260	℃
ESD Sensitivity	HBM ¹	ESD _{HBM}			±2000 (Class 2)	V
E3D Sensitivity	CDM ²	ESD _{CDM}			±500 (Class C2)	٧


Operation of this device above any of these parameters may result in permanent damage.

1. HBM: Human Body Model (JEDEC JS-001-2017)

2. CDM: Charged Device Model (JEDEC JS-002-2018)

1MHz-4000MHz

Figure 3. Pin Configuration (Top View)

^{*} Device is RF Bi -Directional

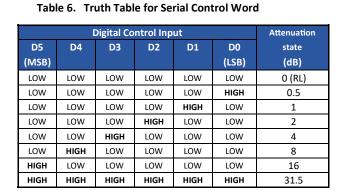
Table 4. Pin Description

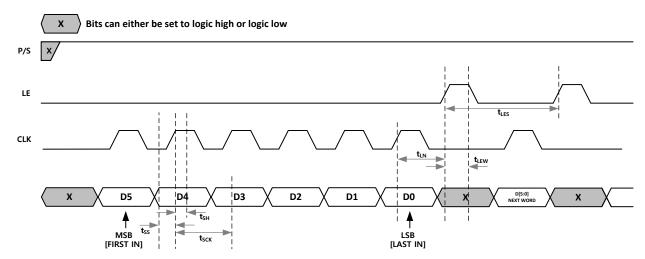
Pin	Pin name	Description
1	D5	Parallel Control Voltage Inputs, Attenuation control bit 16dB
2	RF1 ¹	RF1 port (Attenuator RF Input) This pin can also be used as an output because the design is bidirectional. RF1 is dc-coupled and matched to 50Ω
3	SERIN	Serial interface data input
4	CLK	Serial interface clock input
5	LE	Latch Enable input. This pin is recommended to pull-down.
6	NC	Not Connected
7	PUP1	Power-Up State Selection Bits. These pins set the attenuation value at power-up (see Table 11). There is no internal pull-up or pull-
8	PUP2	down resistor on these pins; therefore, they must always be kept at a valid logic level (V_{CTLH} or V_{CTLL}) and not be left floating
9	V _{DD}	Supply voltage (nominal 3.3V)
13	P/S	Parallel/Serial Mode Select. For parallel mode operation, set this pin to LOW. For serial mode operation, set this pin to HIGH.
14	RF2 ¹	RF2 port (Attenuator RF Output.) This pin can also be used as an input because the design is bidirectional. RF2 is dc-coupled and matched to 50 Ω .
15	D4	Parallel Control Voltage Inputs, Attenuation control bit 8dB
16	D3	Parallel Control Voltage Inputs, Attenuation control bit 4dB
17	D2	Parallel Control Voltage Inputs, Attenuation control bit 2dB
19	D1	Parallel Control Voltage Inputs, Attenuation control bit 1dB
20	D0	Parallel Control Voltage Inputs, Attenuation control bit 0.5dB
Pad	GND	Exposed pad: The exposed pad must be connected to ground for proper operation
10,11,12,18	GND	Ground, These pins must be connected to ground

^{1.} RF pins 2 and 14 must be at 0V DC. The RF pins do not require DC blocking capacitors for proper Operation if the 0V DC requirement is met

1MHz-4000MHz

Programming Options


BDA4601 can be programmed using either the parallel or serial interface, which is selectable via P/S pin(Pin13).


Serial mode is selected by pulling it to a voltage logic HIGH and parallel mode is selected by setting P/S to logic LOW

Serial Control Mode

The serial interface is a 6 bit shift register to shift in the data MSB (D5) first. When serial programming is used, It is recommended all the parallel control input pins (1, 15, 16, 17, 19, 20) are grounded. It is controlled by three CMOS-compatible signals: SERIN, Clock, and Latch Enable (LE).

Figure 4. Serial Mode Timing Diagram

The BDA4601 has a 3-wire serial peripheral interface (SPI): serial data input (SERIN), clock (CLK), and latch enable (LE). The serial control interface is activated when P/S is set to HIGH.

In serial mode, the 6-bit Data is clocked MSB first on the rising CLK edges into the shift register and then LE must be toggled HIGH to latch the new attenuation state into the device. LE must be set to LOW to clock new 6-bit data into the shift register because CLK is masked to prevent the attenuator value from changing if LE is kept HIGH (see Figure 4 and Table 6).

Table 5. 6-bit Serial Word Sequence

D5	Attenuation 16dB Control Bit
D4	Attenuation 8dB Control Bit
D3	Attenuation 4dB Control Bit
D2	Attenuation 2dB Control Bit
D1	Attenuation 1dB Control Bit
D0	Attenuation 0.5dB Control Bit

Table 7. Serial Interface Timing Specifications

Symbol	Parameter	Min	Тур	Max	Unit
\mathbf{f}_{Clk}	Serial data clock frequency			10	MHz
t _{SCK}	Minimum serial period	70			
t _{ss}	Serial Data setup time	10			
t _{sh}	Serial Data hold time	10			
t _{LN}	LE setup time	10			
t _{LEW}	Minimum LE pulse width	30			
t _{LES}	Minimum LE pulse spacing		600		

Table 8. Mode Selection

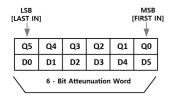
P/S	Control Mode
LOW	Parallel
HIGH	Serial

BeRex

•website: www.berex.com

•email: sales@berex.com

Rev. 1.9



1MHz-4000MHz

Serial Register Map

The BDA4601 can be programmed via the serial control on the rising edge of Latch Enable (LE) which loads the last 6-bits data word in the SHIFT Register. Serial data is clocked in MSB(D5) first.

Figure 5. Serial Register Map

The attenuation word is derived directly from the value of the attenuation state. To find the attenuation word, multiply the value of the state by four, then convert to binary.

For example, to program the 15.5dB state :

2 x 15.5 = 31 31 -> 011111 D5-D0: 111110

Serial Input: 111110

1	1	1	1	1	0
D0	D1	D2	D3	D4	D5

1MHz-4000MHz

Parallel Control Mode

The BDA4601 has six digital control inputs, D0 (LSB) to D5 (MSB), to select the desired attenuation state in parallel mode, as shown in Table 9. The parallel control interface is activated when P/S is set to LOW. There are two modes of parallel operation: direct parallel and latched parallel

Direct Parallel Mode

The LE pin must be kept HIGH. The attenuation state is changed by the control voltage inputs (D0 to D5) directly. This mode is ideal for manual control of the attenuator. In this mode the device will immediately react to any voltage changes to the parallel control pins [pins 1, 15, 16, 17,19, 20]. Use direct parallel mode for the fastest settling time.

Latched Parallel Mode

The LE pin must be kept LOW when changing the control voltage inputs (D0 to D5) to set the attenuation state. When the desired state is set, LE must be toggled HIGH to transfer the 6-bit data to the bypass switches of the attenuator array, and then toggled LOW to latch the change into the device until the next desired attenuation change (see Figure 5 and Table 9).

Figure 5. Latched Parallel Mode Timing Diagram

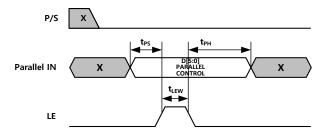


Table 9. Truth Table for the Parallel Control Word

D0	D1	D2	D3	D4	D5	P/S	Ħ	Attenuation State
LOW	LOW	LOW	LOW	LOW	LOW	LOW	HIGH	Reference Loss
HIGH	LOW	LOW	LOW	LOW	LOW	LOW	HIGH	0.5dB
LOW	HIGH	LOW	LOW	LOW	LOW	LOW	HIGH	1dB
LOW	LOW	HIGH	LOW	LOW	LOW	LOW	HIGH	2dB
LOW	LOW	LOW	HIGH	LOW	LOW	LOW	HIGH	4dB
LOW	LOW	LOW	LOW	HIGH	LOW	LOW	HIGH	8dB
LOW	LOW	LOW	LOW	LOW	HIGH	LOW	HIGH	16dB
HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	LOW	HIGH	31.5dB

Table 10. Parallel Interface Timing Specifications

Symbol	Parameter	Min	Тур	Max	Unit
t _{LEW}	Minimum LE pulse width	10			ns
t _{PH}	Data hold time from LE	10			ns
t _{PS}	Data setup time to LE	10			ns

Power-UP Interface

The BDA4601 uses the PUP1 and PUP2 control voltage inputs to set the attenuation value to a known value at power-up before the initial control data word is provided in parallel mode.

Power-up Control for Parallel Mode (P/S=LOW)

When the attenuator powers up with LE set to LOW, the state of PUP1 and PUP2 determines the power-up state of the device per the truth table shown in Table 11.

Power-up Control for Serial Mode (P/S=HIGH)

When the attenuator powers up in Serial mode, the six digital control inputs are set to whatever data is present on the six parallel data inputs (D0 to D5, Refer to Table 12). This allows any one of the 64 attenuation settings to be specified as the power-up state.

Table 11. PUP Truth Table for Parallel Control Mode

Attenuation state	P/S	LE	PUP1	PUP2
31.5 dB	LOW	LOW	HIGH	HIGH
16 dB	LOW	LOW	HIGH	LOW
8 dB	LOW	LOW	LOW	HIGH
Reference Loss	LOW	LOW	LOW	LOW
Defined by C0.5-C16	LOW	HIGH	Don't Care	Don't Care

Table 12. PUP Truth Table for Serial Control Mode

Attenuation State	P/S	D0	D1	D2	D3	D4	D5
Reference Loss	HIGH	LOW	LOW	LOW	LOW	LOW	LOW
0.5dB	HIGH	HIGH	LOW	LOW	LOW	LOW	LOW
1dB	HIGH	LOW	HIGH	LOW	LOW	LOW	LOW
2dB	HIGH	LOW	LOW	HIGH	LOW	LOW	LOW
4dB	HIGH	LOW	LOW	LOW	HIGH	LOW	LOW
8dB	HIGH	LOW	LOW	LOW	LOW	HIGH	LOW
16dB	HIGH	LOW	LOW	LOW	LOW	LOW	HIGH
20dB	HIGH	LOW	LOW	LOW	HIGH	LOW	HIGH
24dB	HIGH	LOW	LOW	LOW	LOW	HIGH	HIGH
31.5dB	HIGH						

BeRex

•website: www.berex.com

1MHz-4000MHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25°C and V_{DD} = 3.3V, EVKit Rev.2 RF connector and board losses are de-embedded, unless otherwise noted

Figure 6. Insertion loss vs Temperature

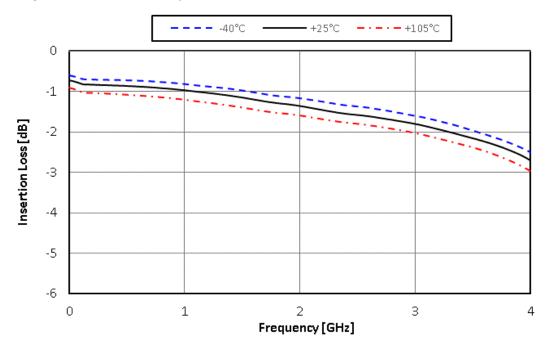
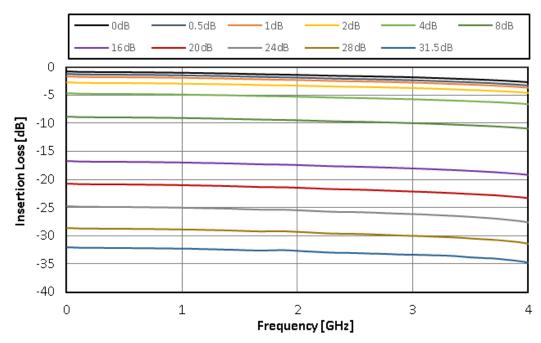



Figure 7. Insertion loss vs Attenuation Setting

BeRex

•website: www.berex.com

1MHz-4000MHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25°C and V_{DD} = 3.3V, EVKit Rev.2 RF connector and board losses are de-embedded, unless otherwise noted

Figure 8. Input Return Loss vs Attenuation Setting

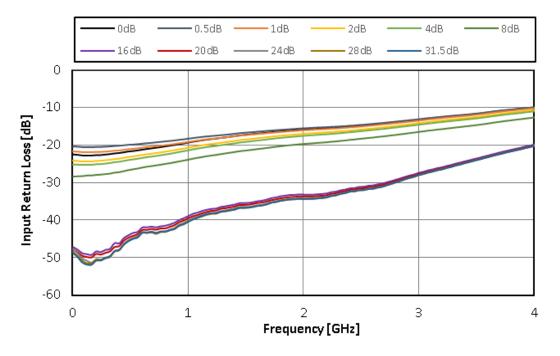
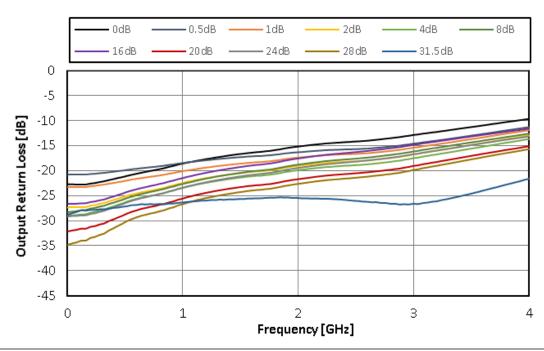



Figure 9. Output Return Loss vs Attenuation Setting

BeRex

•website: www.berex.com

1MHz-4000MHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25°C and V_{DD} = 3.3V, EVKit Rev.2 RF connector and board losses are de-embedded, unless otherwise noted

Figure 10. Input Return Loss for 16dB Attenuation Setting vs Temperature

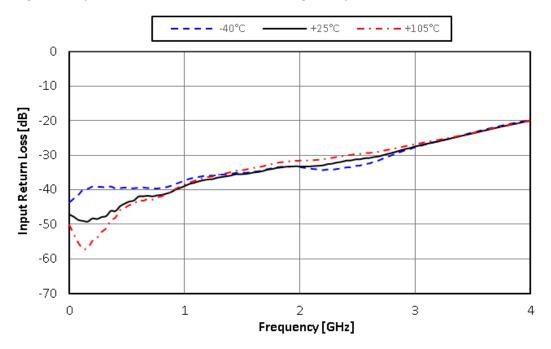
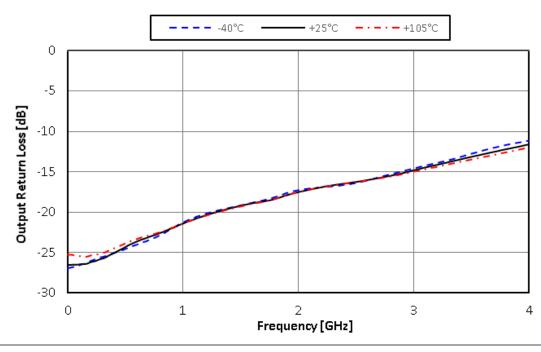



Figure 11. Output Return Loss for 16dB Attenuation Setting vs Temperature

BeRex

•website: www.berex.com

1MHz-4000MHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25°C and V_{DD} = 3.3V, EVKit Rev.2 RF connector and board losses are de-embedded, unless otherwise noted

Figure 12. Relative Phase Error vs Attenuation Setting

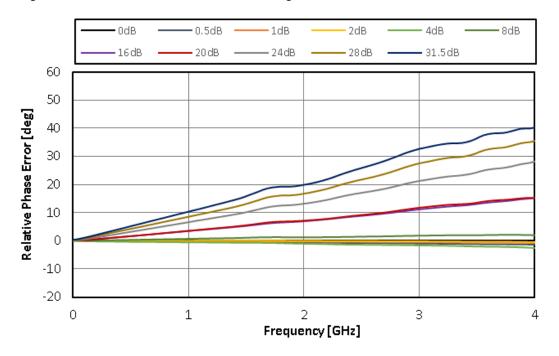
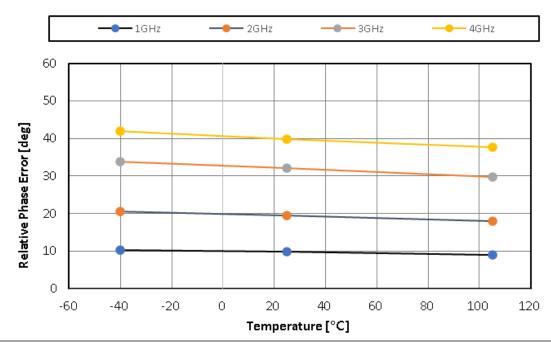



Figure 13. Relative Phase Error for 31.5dB Attenuation Setting vs Frequency

BeRex

•website: www.berex.com

●email: <u>sales@berex.com</u>

1MHz-4000MHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25°C and V_{DD} = 3.3V, EVKit Rev.2 RF connector and board losses are de-embedded, unless otherwise noted

Figure 14. Attenuation Error @900MHz vs Temperature

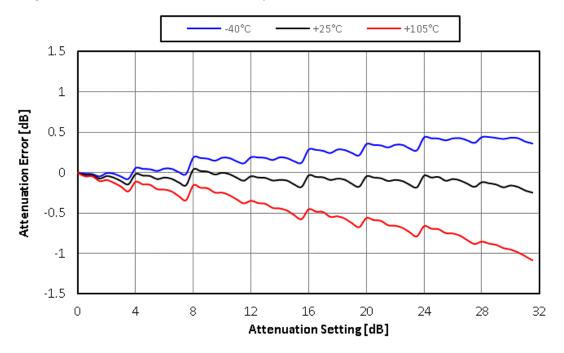
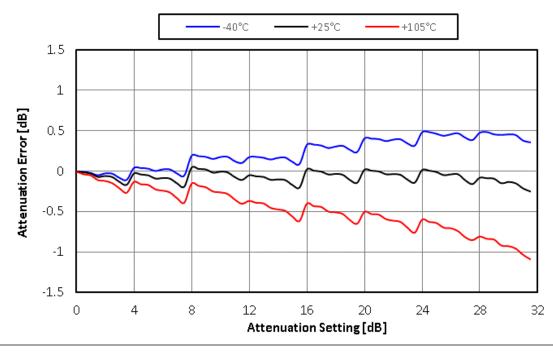



Figure 15. Attenuation Error @1800MHz vs Temperature

BeRex

•website: www.berex.com

1MHz-4000MHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25°C and V_{DD} = 3.3V, EVKit Rev.2 RF connector and board losses are de-embedded, unless otherwise noted

Figure 16. Attenuation Error @2200MHz vs Temperature

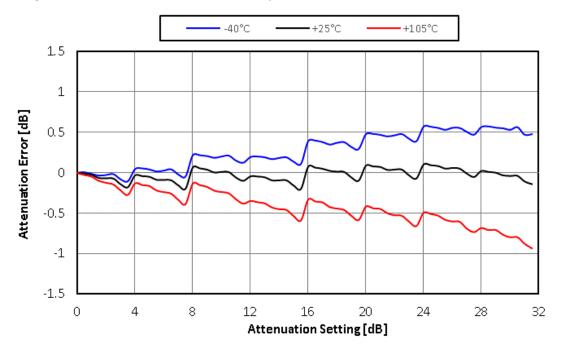
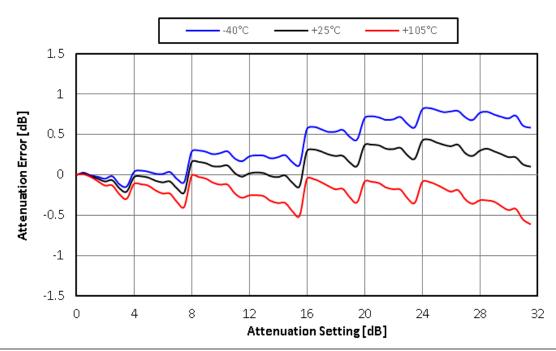



Figure 17. Attenuation Error @3500MHz vs Temperature

BeRex

•website: www.berex.com

1MHz-4000MHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25°C and V_{DD} = 3.3V, EVKit Rev.2 RF connector and board losses are de-embedded, unless otherwise noted

Figure 18. IIP3 @ 1950MHz vs Temperature

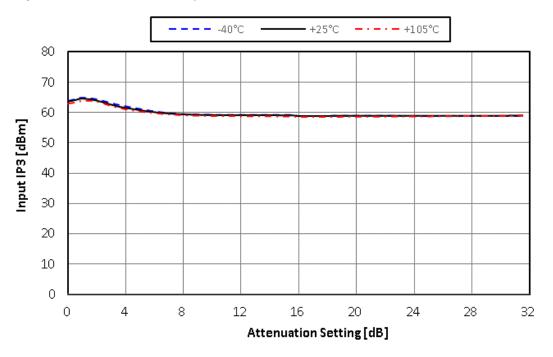
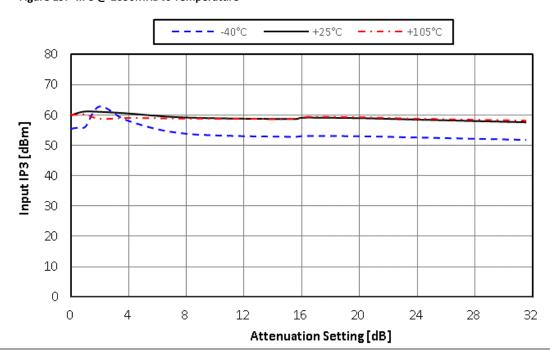
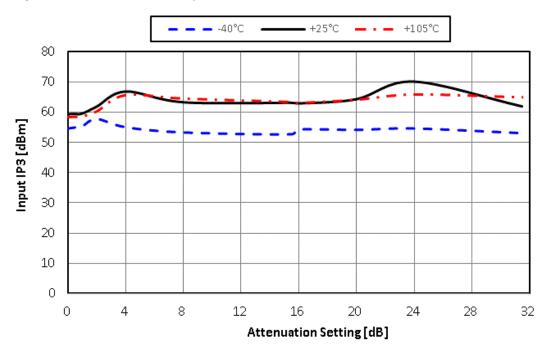



Figure 19. IIP3 @ 2650MHz vs Temperature

BeRex


•website: www.berex.com

1MHz-4000MHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25°C and V_{DD} = 3.3V, EVKit Rev.2 RF connector and board losses are de-embedded, unless otherwise noted

Figure 20. IIP3 @ 3500MHz vs Temperature

Rev. 1.9

1MHz-4000MHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25°C and V_{DD} = 3.3V, EVKit Rev.2 RF connector and board losses are de-embedded, unless otherwise noted

Figure 21. 0.1dB Compression @1950MHz vs Temperature

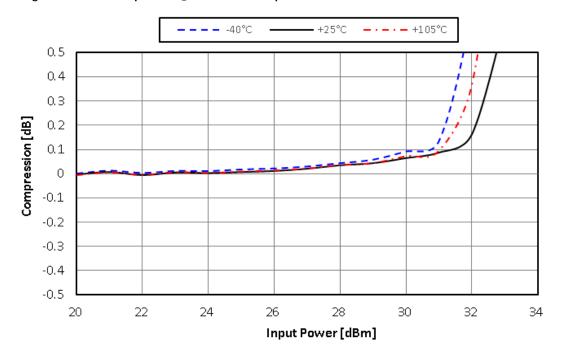
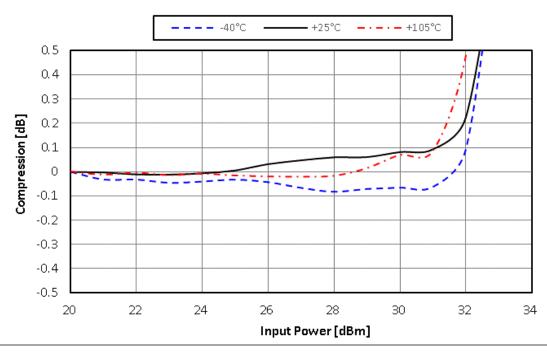



Figure 22. 0.1dB Compression @3500MHz vs Temperature

BeRex

•website: www.berex.com

1MHz-4000MHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25°C and V_{DD} = 3.3V, EVKit Rev.2 RF connector and board losses are de-embedded, unless otherwise noted

Figure 23. 0.5dB Step Attenuation vs Frequency

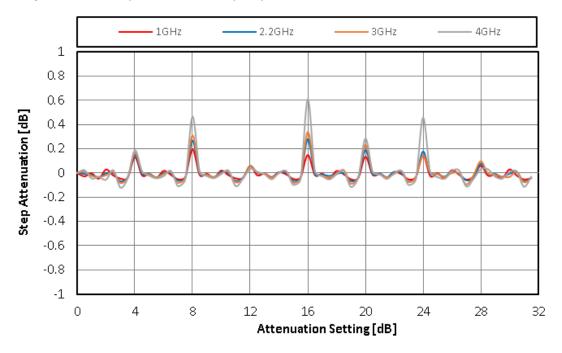
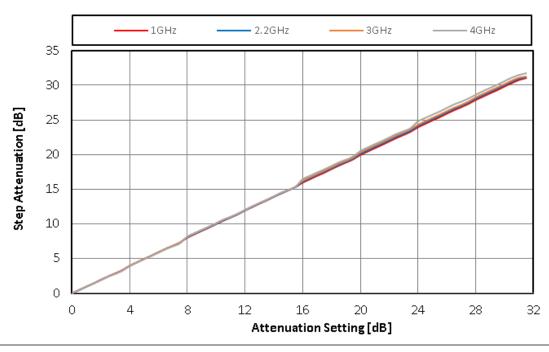



Figure 24. 0.5dB Step Attenuation vs Frequency

BeRex

•website: www.berex.com

●email: <u>sales@berex.com</u>

1MHz-4000MHz

Typical RF Performance Plot - BDA4601 EVK - PCB

Typical Performance Data @ 25°C and V_{DD} = 3.3V, EVKit Rev.2 RF connector and board losses are de-embedded, unless otherwise noted

Figure 25. 0.5dB Major State Bit Error vs Attenuation Setting

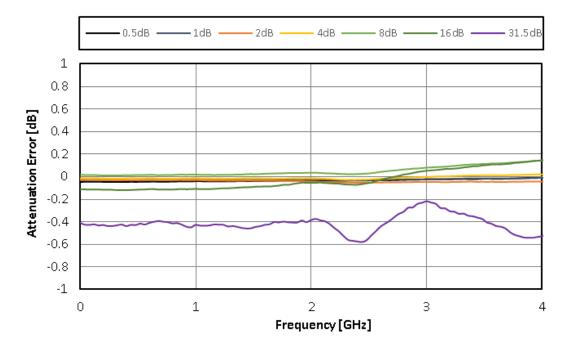
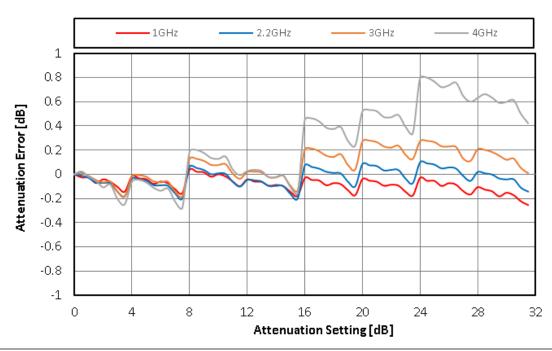



Figure 26. 0.5dB Major Attenuation Error vs Frequency

BeRex

•website: www.berex.com

●email: <u>sales@berex.com</u>

1MHz-4000MHz

BDA4601 Evaluation board Kit Description

Figure 27. BDA4601 EVK Rev.2

Evaluation board Kit Introduction

BDA4601 Evaluation Kit is made up of a combination of an RF board and an interface board

The schematic of the BDA4601 evaluation RF board is shown in Figure 30. The BDA4601 evaluation RF board is constructed of a 4-layer material with a copper thickness of 0.7 mil on each layer. Every copper layer is separated with a dielectric material. The top dielectric material is 12 mil RO4003. The middle and bottom dielectric materials are FR-4, used for mechanical strength and overall board thickness of approximately 1.55mm.

BDA4601 Evaluation INTERFACE board is assembled with a SP3T switches(D0~D5, LE), SP2T mechanical switch (P/S), and several header & switch.

Evaluation Board Programming Using USB Interface

In order to evaluate the BDA4601 performance, the Application Software has to be installed on your computer. And The DSA application software GUI supports Latched Parallel and Serial modes. software can be downloaded from BeRex's website

Serial Control Mode

- Connect directly the Evaluation INTEFRACE board USB port(J3) to PC
- Set the direction of P<->S Switch to S direction
- Set the D0~D5,LE switch to the central position.
- Operate the 0~31.5dB attenuation state in GUI and then control the DSA

Latched Parallel Control Mode

- Connect directly the Evaluation INTEFRACE board USB port(J3) to PC
- Set the direction of P<->S Switch to P direction
- Set the D0~D5,LE switch to the middle position.
- Operate the 0~31.5dB attenuation state in GUI and then control the DSA

Direct Parallel Control Mode

- Set the direction of P<->S Switch to P direction
- Set LE switch to the LOW Position
- For the setting to attenuation state, D0~D5 switches can be combined in manually program, refer to Table 9.

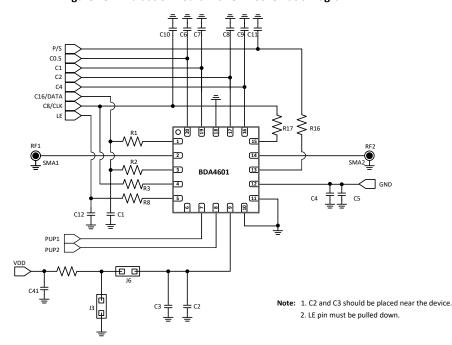
Please refer to User Manual Rev.1 or Rev.2 for more detailed operation method of BDA4601 FVK.

Rev. 1.9

1MHz-4000MHz

BDA4601 Evaluation board Kit Rev.2 Description

Figure 28. Evaluation Board Kit Rev.2 Schematic Diagram



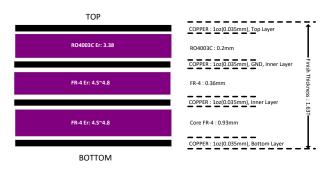
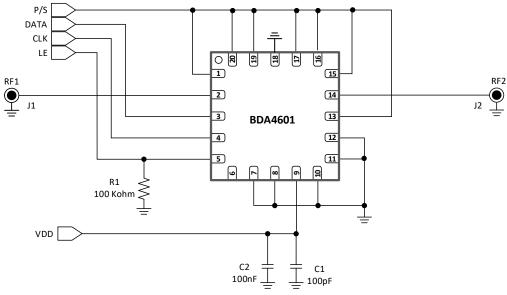

Figure 29. Evaluation Board PCB Layout Information 50Ω

Table 13. Bill of Material - Evaluation Board

No.	Ref Des	Part Qty	Value	Description	Remark
1	C1,C2,C6-C12	9	100pF	CAP, 0402, CHIP Ceramic, ±0.25%	
2	C3	1	100nF	CAP, 0402, CHIP Ceramic, ±0.25%	
3	R1,R16,C4	2	0 ohm	RES, 0402, CHIP, ±5%	
4	C5,C41,R7	1	NC		
4	R2,R3,R8,R17	2	1k ohm	RES, 0402, CHIP, ±5%	
5	SMA1, SMA2	2	CON	SMA END LAUNCH	
6	U1	1	Chip	DSA, BDA4601 QFN4x4 24L	

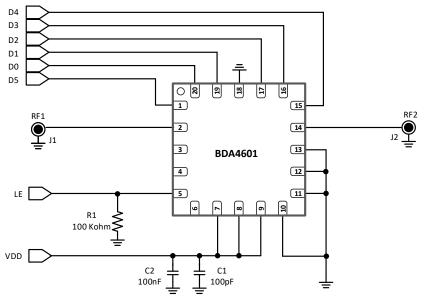
Figure 30. Evaluation Board PCB Layer Information 50Ω



BeRex •website: www.berex.com

1MHz-4000MHz

BDA4601 Evaluation board Kit Description

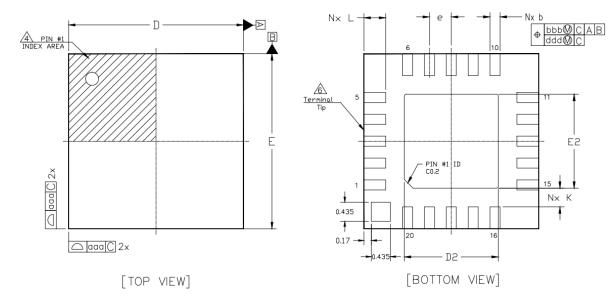

Figure 31. Serial mode Application Schematic (Max Attenuation Power Up State)

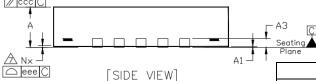
Note: 1. C1 and C2 should be placed near the device.

2. LE pin must be set to Logic Low for Maximum Attenuation to operate during power-up. Recommended to add pull-down resistor(R1) at the LE pin.

Figure 32. Latched Parallel mode Application Schematic (Max Attenuation Power Up State)

Note: 1. C1 and C2 should be placed near the device.


2. LE pin must be set to Logic Low for Maximum Attenuation to operate during power-up. Recommended to add pull-down resistor(R1) at the LE pin.


BeRex

•website: www.berex.com

1MHz-4000MHz

Figure 33. Packing Outline Dimension

NOTE:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-2009.
- 2. All dimensions are in millimeters.
- 3. N is the total number of terminals.
- 4. The location of the marked terminal #1 identifier is within the hatched area.
- 5. ND and NE refer to the number of terminals on each D and E side respectively.
- 6. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.30mm from the terminal tip. If the terminal has a radius on the other end of it, dimension b should not be measured in that radius area.
- 7. Coplanarity applies to the terminals and all other bottom surface metallization

Dimension Table					
Symbol		NOTE			
Зуппол	MINIMUM	NOMINAL	MAXIMUM	NOTE	
Α	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
А3		0.203 Ref			
b	0.18	0.23	0.28	6	
D		4.00 BSC			
Е		4.00 BSC			
е		0.50 BSC			
D2	2.10	2.15	2.20		
E2	2.10	2.15	2.20		
К	0.20				
L	0.45	0.55	0.65		
aaa		0.05			
bbb		0.10			
ссс		0.10			
ddd		0.05			
eee		0.08			
N		20		3	
ND		5		5	
NE		5		5	

BeRex •website: www.berex.com

1MHz- 4000MHz

Figure 34. Recommend Land Pattern

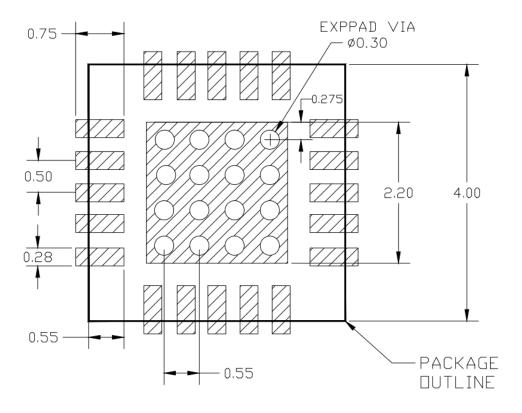
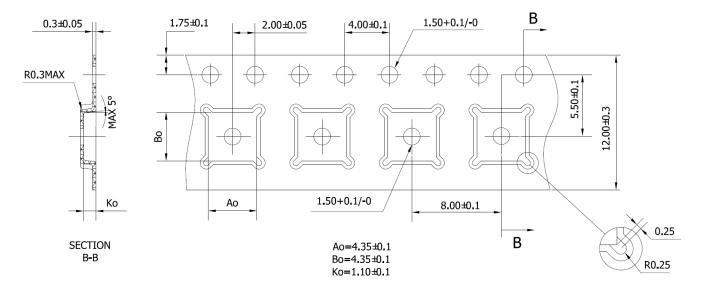


Figure 35. Package Marking


Marking information:			
BDA4601	Device Name		
YY	Year		
ww	Work Week		
XX	LOT Number		

Rev. 1.9

1MHz-4000MHz

Figure 36. Tape & Reel

- NOTES: 1.10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0,2 2 CAMBER IN COMPLANCE WITH EIA 481 3 POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

Packaging information:			
Tape Width	12mm		
Reel Size	7inch		
Device Cavity Pitch	8mm		
Devices Per Reel	1k		

1MHz-4000MHz

Lead plating finish

100% Tin Matte finish

MSL / ESD Rating

ESD Rating: Class 2

Value: ±2000V

Test: Human Body Model (HBM)
Standard: JEDEC Standard JS-001-2017

MSL Rating: Level 1 at +260°C convection reflow

Standard: JEDEC Standard J-STD-020

Proper ESD procedures should be followed when handling this device.

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

2	N	9	6	F
---	---	---	---	---

BeRex ●website: <u>www.berex.com</u>

●email: <u>sales@berex.com</u>