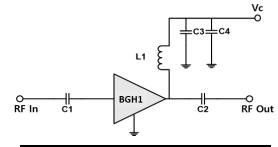


Device Features

- Single Fixed 3.3V supply
- Supply current = 31mA
- Gain = 20.5 dB @ 1900MHz
- Output P1 dB = 14.2 dBm @ 1900MHz
- LTE 20MHz ACLR = 3.4 dBm @ 1900MHz
- Internally matched to 50 ohms
- RoHS2-compliant SOT-363 SMT package

Product Description


The BGH1 is a BroadBand, HBT Amplifier that is ideal for applications demanding high linearity in a wideband of 40-5000 MHz. The product is targeted for using as low current gain block amplifier for wireless infrastructure applications.

The BGH1 is internally matched to 50 Ohms and requires no external matching components. It is available in RoHS2-compliant SOT363 SMT package. These devices are 100% DC and RF tested to assure quality and performance.

Applications

- Mobile Infrastructure
- LTE / WCDMA / EDGE / 5G NR / WIFI
- General Purpose Wireless

Applications Circuit

A	Application Ci	rcuit Values E	xample
Freq.	0.04 ~ 0.8GHz	0.8 ~ 2.8GHz	2.8 ~ 5GHz
C1	150 pF	82 pF	7 pF
C2	150 pF	82 pF	7 pF
C3	100 pF	100 pF	100 pF
C4	1 nF	1 nF	1 nF
L1	560 nH	22 nH	18 nH

Pin Desc	ription
RF IN	3
RF OUT	6
GND	1,2,4,5

Electrical Specifications

*Device performance _measured on a BeRex evaluation board at 25°C, Vc=3.3V, 50 Ω system.

Parameter	Conditions	Min	Тур	Max	Unit
Operational Frequency Range		40		5000	MHz
Test Frequency			900		MHz
Gain		21.5	23.0		dB
Input Return Loss			-13.0		dB
Output Return Loss			-15.0		dB
Output IP3	0 dBm / tone , Δf=1MHz	23.3	26.3		dBm
Output P1dB		12.8	13.8		dBm
LTE 20M ACLR*		3.0	4.0		dBm
Noise Figure			2.5	3.0	dB

^{*}ACLR Channel Power measured at -50dBc.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Unit
Bandwidth	40		5000	MHz
I _C @ (Vc = 3.3V)	25	31	37	mA
V _c	3.0	3.3	3.6	V
dG/dT		-0.003		dB/°C
R _{TH}		50.7		°C/W
Operating Case Temperature	-40		+105	°C

^{*}Electrical specifications are measured at specified test conditions.

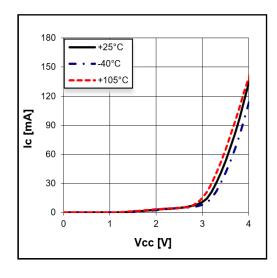
Absolute Maximum Ratings

Parameter	Rating	Unit
Storage Temperature	-55 to +155	°C
Junction Temperature	130	°C
Supply Voltage	+4	V
Supply Current	140	mA
Input RF Power	25	dBm

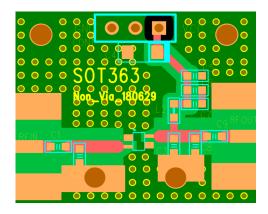
*Operation of this device above any of these parameters may result in permanent damage.

^{*}LTE set-up: 3GPP LTE, FDD E-TM3.1, 20MHz BW, ±20MHz offset, PAR 9.75 at 0.01% Prob.

^{*}Specifications are not guaranteed over all recommended operating conditions.



Typical Performance (Vc=3.3V, Ic=31mA, T=25°C)


Parameter				Frequency				Unit
	50	70	900	1900	2140	3500	4500	MHz
Gain	24.0	24.0	23.1	20.5	20.0	17.0	15.0	dB
S11	-12.3	-13.2	-13.0	-17.9	-17.6	-10.7	-8.2	dB
S22	-11.5	-10.9	-15.6	-12.2	-11.5	-15.0	-19.5	dB
OIP3	26.3	25.5	26.3	26.3	26.2	22.6	19.8	dBm
P1dB	13.6	13.7	13.8	14.2	13.8	11.8	9.5	dBm
LTE 20M ACLR*	4.0	3.4	4.0	3.4	3.5	-	-	dBm
5G NR ACLR [*]	-	-	-	-	-	-0.5	-2.9	dBm
Noise Figure	2.3	2.3	2.5	2.7	2.7	2.7	3.0	dB

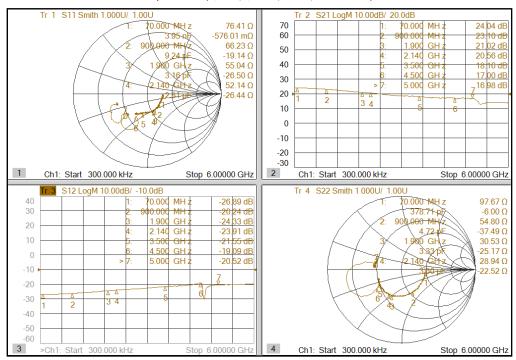
^{*}ACLR Channel Power measured at -50dBc.

V-I Characteristics

BeRex SOT-363 Evaluation Board

*Dielectric constant $_4.2$ *RF pattern width 52mil *31mil thick FR4

⁻ LTE set-up: 3GPP LTE, FDD E-TM3.1, 20MHz BW, ±20MHz offset, PAR 9.75 at 0.01% Prob.


^{- 5}G set-up: 3GPP 5G NR, 100MHz BW, ±100MHz offset, PAR 9.5 at 0.01% Prob.

^{*}Without vias under device degrade device performance.

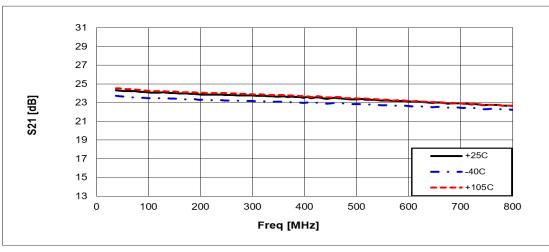
Typical Device Data

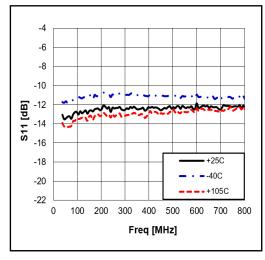
S-parameters (V_c=3.3V, I_c=31mA, T=25°C, Bias Tee Data)

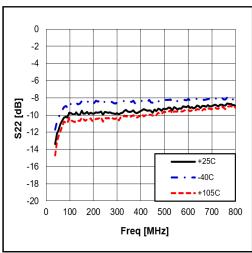
S-Parameter

(V_c = 3.3V, I_c = 31mA, T = 25 °C, calibrated to device leads, Bias Tee Data)

Freq	S11	S11	S21	S21	S12	S12	S22	S22
[MHz]	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
100	0.20	-5.77	15.92	175.60	0.05	1.64	0.32	-7.29
500	0.21	-24.89	15.31	158.95	0.05	9.34	0.33	-36.19
1000	0.22	-44.53	14.07	139.67	0.05	17.55	0.35	-68.40
1500	0.22	-57.05	12.35	123.01	0.06	23.40	0.37	-94.21
2000	0.25	-69.31	10.98	109.29	0.06	25.95	0.38	-112.22
2500	0.25	-80.84	9.59	95.77	0.07	26.57	0.38	-127.53
3000	0.26	-92.62	8.62	87.06	0.07	28.49	0.37	-137.42
3500	0.27	-103.50	8.06	74.77	0.08	25.92	0.35	-147.51
4000	0.30	-115.76	7.35	67.05	0.09	25.05	0.34	-155.36
4500	0.36	-116.36	7.08	51.51	0.11	-1.58	0.42	-143.55
5000	0.46	-133.07	7.14	34.94	0.09	25.38	0.36	170.48

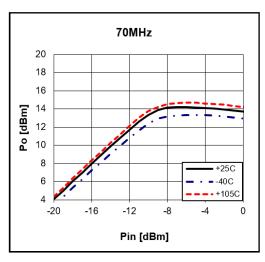



RF Application Circuit: 40 ~ 800MHz

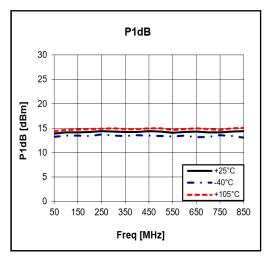

Schematic Diagram		вом	Size(Inch)
Vc O	C1	150 pF	0603
±c3 ±c4	C2	150 pF	0603
L1 &	C3	100 pF	0603
O BGH1 C2 RF Out	C4	1 nF	0603
	L1	560 nH	0603

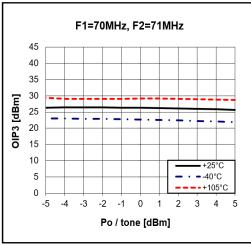
Typical Performance

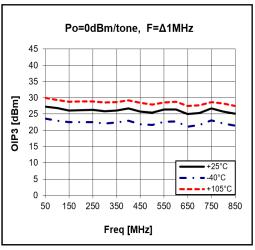
 $V_c = 3.3V$, $I_c = 31mA$, $T=25^{\circ}C$

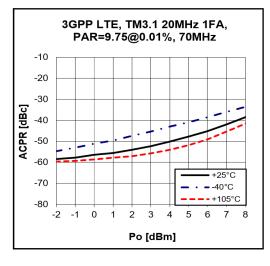

BeRex

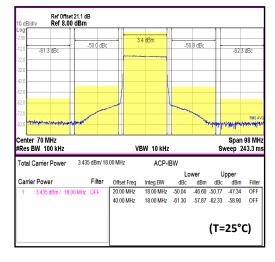
•website: www.berex.com

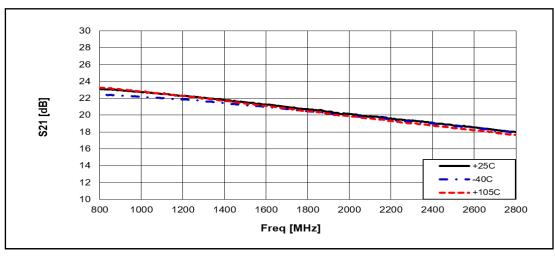

•email: sales@berex.com

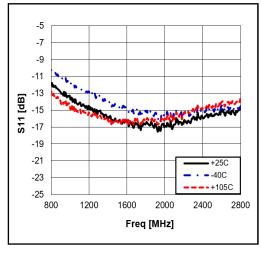


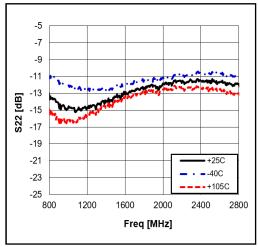





BEREX

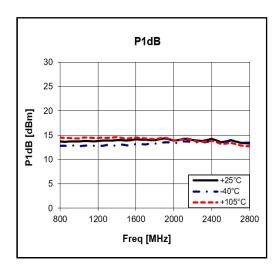


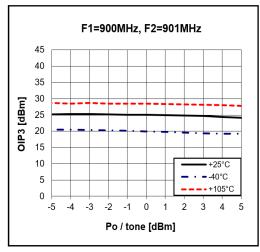

RF Application Circuit: 800 ~ 2800MHz

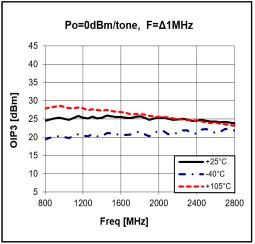

Schematic Diagram		вом	Size(Inch)
Vc O	C1	82 pF	0603
L1 \(\frac{+\cdot c3 + \cdot c4}{} \)	C2	82 pF	0603
	C3	100 pF	0603
O BGH1 C2 RF Out	C4	1 nF	0603
	L1	22 nH	0603

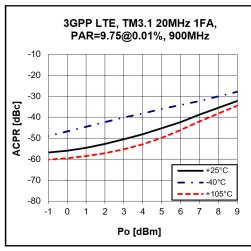
Typical Performance

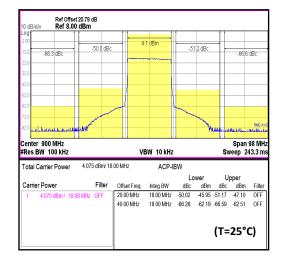
 $V_c = 3.3V$, $I_c = 31mA$, $T=25^{\circ}C$

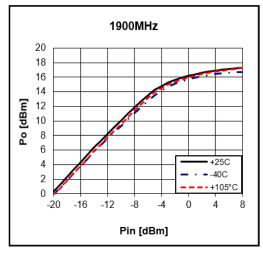


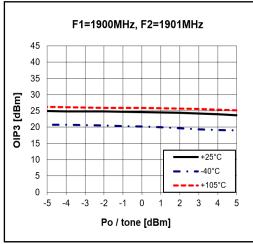


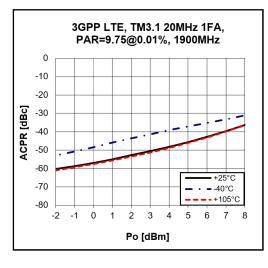


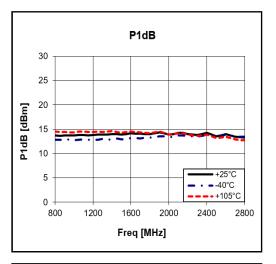


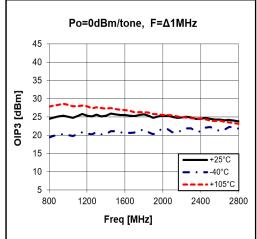

BEREX

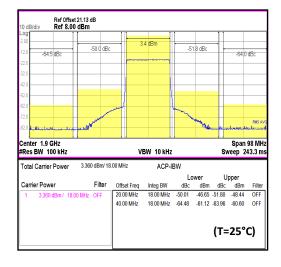


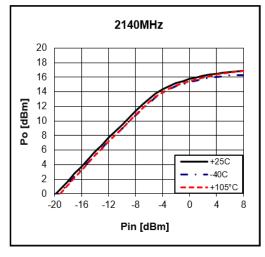


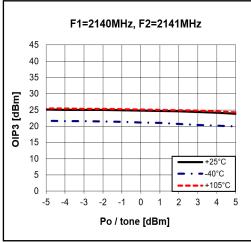


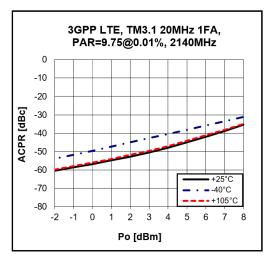


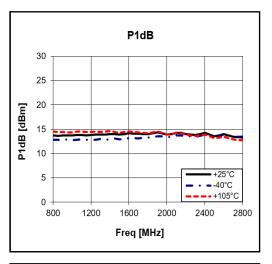

Preliminary Datasheet

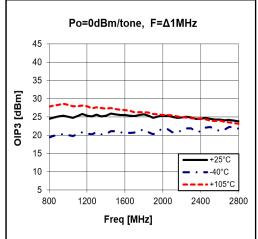


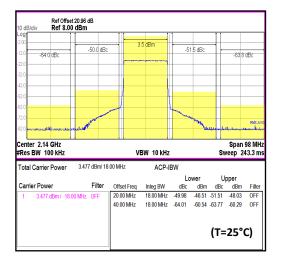


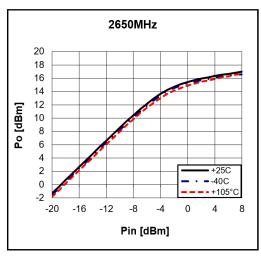


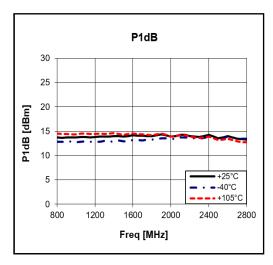


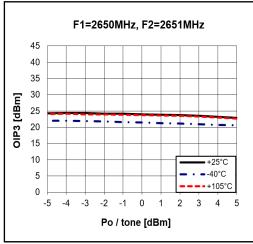


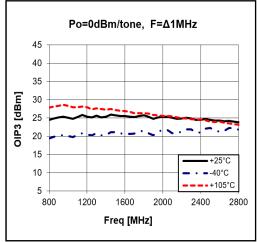

Preliminary Datasheet

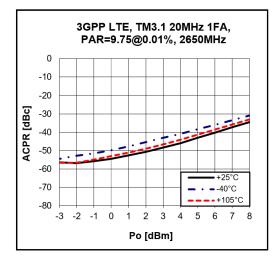


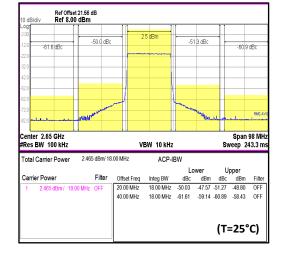


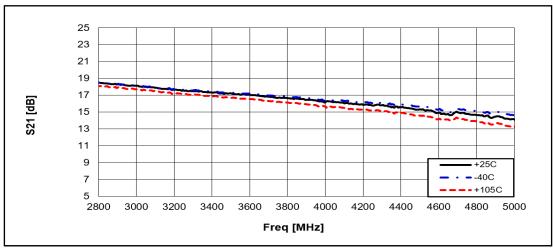


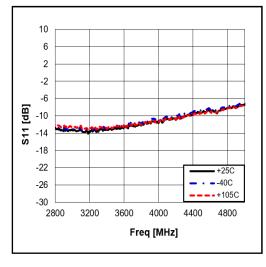


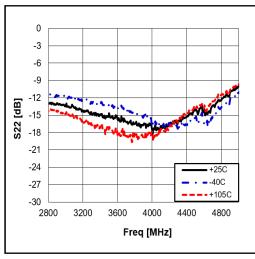






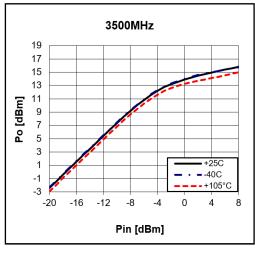


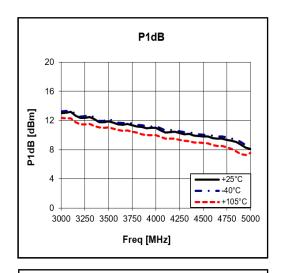

RF Application Circuit: 2800 ~ 5000MHz

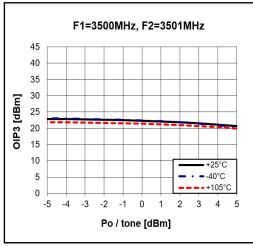

Schematic Diagram		вом	Size(Inch)
Vc O	C1	7 pF	0603
L ₁ \(\frac{+}{\xi} \) \	C2	7 pF	0603
	C3	100 pF	0603
O BGH1 O C2 RF Out	C4	1 nF	0603
	L1	18 nH	0603

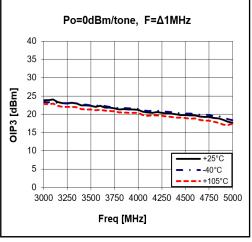
Typical Performance

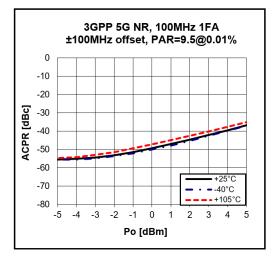
 $V_c = 3.3V$, $I_c = 31mA$, $T=25^{\circ}C$

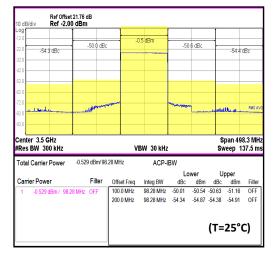


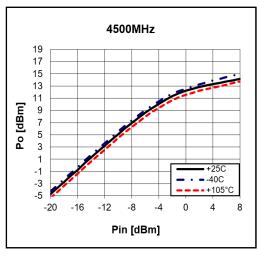

BeRex

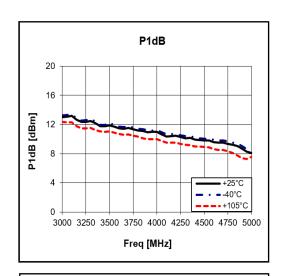

•website: www.berex.com

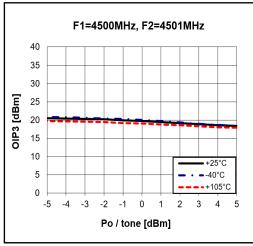

●email: sales@berex.com

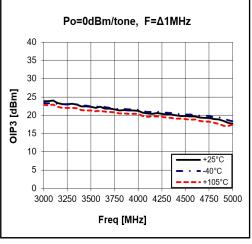


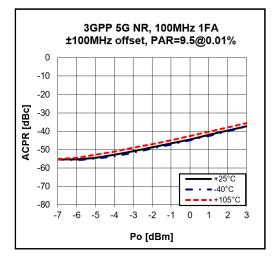


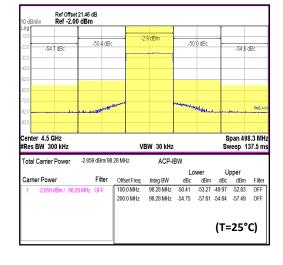


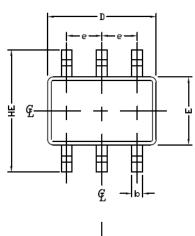


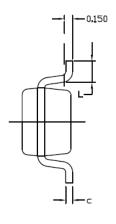


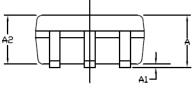






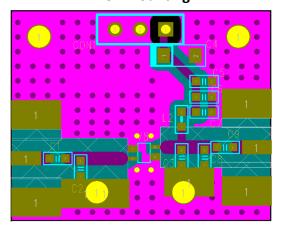






Package Outline Dimension

SYMBOL	MIN	MAX
E	1.15	1,35
D	1,85	2,25
HE	2,00	2,30
A	0.80	1,00
A2	0.80	0.91
A1	0.00	0.09
Ф	0,65	BSC
k	0.15	0.30
U	0.08	0.25
L	0.21	0.41

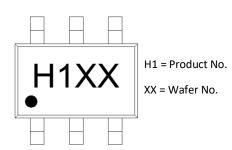


Suggested PCB Land Pattern and PAD Layout

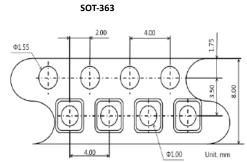
PCB Land Pattern

0.380 0.450 0.450 0.450 0.450 0.450 0.450 0.745 0.570 0.

PCB Mounting



Note: All dimension _ millimeters


PCB lay out _ on BeRex website

Package Marking

Tape & Reel

Packaging information:

Tape Width (mm): 8

Reel Size (inches): 7

Device Cavity Pitch (mm): 4

Devices Per Reel: 3000

Pin 1

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating: Class 1C

Value: Passes < 2000V

Test: Human Body Model (HBM)
Standard: JEDEC Standard JS-001-2017

MSL Rating: Level 1 at +260°C convection reflow

Standard: JEDEC Standard J-STD-020

Proper ESD procedures should be followed when handling this device.

RoHS Compliance

This part is compliant with Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU. This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

2 14 3 0 6
