

Product Description

The BSW6420 is an absorptive SPDT 50Ω matched RF switch supporting bandwidths up to 6GHz. Its high linearity performance across the temperature range makes it ideally suited for use in 3G/4G/5G wireless infrastructure and 802.11 a/n/ac/ax applications where high power and excellent performance is required.

The BSW6420 is designed with robust ESD protection circuits at all pins and packaged in an industry standard, fully RoHS2-compliant, 16-Lead, 3mm x 3mm x 0.75mm TQFN package.

The BSW6420 does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor.

A functional block diagram is shown in Figure 1.

Block Diagram

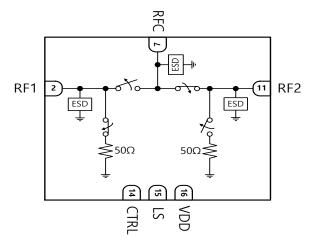


Figure 1 Functional Block Diagram

Applications

- Wireless 3G/4G/5G Infrastructure
- WLAN 802.11 a/n/ac/ax

Package Type

3mm x 3mm x 0.75mm, 16-Lead TQFN Package Figure 2 Package Type

Device Features

• Output frequency range: 50 MHz to 6.0 GHz

• Supply Voltage: 2.7V to 3.6V

• ESD, HBM

: 2.5kV @ RF pins

: 2.0kV @ All pins except RF pins

• Constant impedance during switching transition

: Return loss 10dB

• Operating temperature range : -40°C to +105°C

• Low Insertion Loss

: 0.79dB @ 2.35GHz

: 0.81dB @ 3.5GHz

: 0.84dB @ 4.9GHz

High Isolation

- RFC to RFx

: 66dB @ 2.35GHz

: 56dB @ 3.5GHz

: 48dB @ 4.9GHz

- RFx to RFx

: 52dB @ 2.35GHz

: 47dB @ 3.5GHz

: 42dB @ 4.9GHz

• High Input 1dB Compression

: 40.5dBm @ 2.35GHz

: 41dBm @ 3.5GHz

: 41dBm @ 4.9GHz

• High IIP3

: 63.5dBm @ 2.35GHz

: 66dBm @ 3.5GHz

: 66.5dBm @ 4.9GHz

• Switching Time: 530 to 540ns

• 16-Lead TQFN package: 3.0mm x 3.0mm x 0.75mm

• Lead-free/RoHS2-compliant TQFN SMT Package

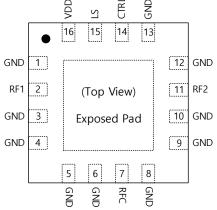
Electrical Specifications

Typical conditions are at VDD = 3.3V, T_A = 25°C, LS/CTRL Low = 0V, LS/CTRL High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss⁽¹⁾, unless otherwise noted.

Table 1 Electrical Specifications

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating Frequency			50		6000	MHz
Insertion Loss	RFC - RFx	1GHz 2GHz 3GHz 4GHz 5GHz 6GHz		0.70 0.77 0.82 0.80 0.84 1.03		dB
Isolation	RFC - RFx	1GHz 2GHz 3GHz 4GHz 5GHz 6GHz		69 67 61 52 48 45		dB
Isolation	RFx - RFx	1GHz 2GHz 3GHz 4GHz 5GHz 6GHz		62 55 49 45 41 37		dB
Return Loss (Active Port)	RFC, RF1, RF2	50MHz – 6GHz		15		dB
Return Loss (Terminated Port)	RFC, RF1, RF2	50MHz – 6GHz		15		dB
Return Loss during switching transition	RFC, RF1, RF2	50MHz – 6GHz		10		dB
Input P1dB	RFC - RFx	2.35GHz 3.5GHz 4.9GHz		40.5 41.0 41.0		dBm
Input IP3 ⁽²⁾	RFC - RFx	2.35GHz 3.5GHz 4.9GHz		63.5 66.0 66.5		dBm
Input IP2 ⁽²⁾	RFC - RFx	2.35GHz 3.5GHz 4.9GHz		108 109 110		dBm
2 nd Harmonic ⁽³⁾	RFC - RFx	2.35GHz 3.5GHz 4.9GHz		97 97 100		dBc
3 rd Harmonic ⁽³⁾	RFC - RFx	2.35GHz 3.5GHz 4.9GHz		100 105 105		dBc
Switching Time	RFC - RFx	50% control to 90% RF 50% control to 10% RF		540 530		ns
Settling Time	RFC - RFx	50% CTRL to 0.05dB final value Rising Edge 50% CTRL to 0.05dB final value Falling Edge		560 550		ns

The typical spurious performance of the BSW6420 is –115dBm / 10Hz @ Over 10MHz


⁽¹⁾ Excluding SMA Connector and PCB loss.

⁽²⁾ Tone Power is 18dBm and Tone spacing is 20KHz.

⁽³⁾ Tone Power is 18dBm.

Product Description

Figure 3 Pin Description

Table 2 Pin Descriptions

No.	Pin Name	Descriptions	
2	RF1	RF1 Port	
7	RFC	RF Common Port	
11	RF2	RF2 Port	
14	CTRL	Digital Control Logic Input	
15	LS	Logic Select (Definition for the CTRL pin, See Table3)	
16	VDD	Supply Voltage	
1,3,4,5,6,8,9,10, 12,13	GND	Ground	
Pad	Exposed Pad	Ground	

Table 3 Control Truth Table

LS	CTRL	RFC-RF1	RFC-RF2
0	0	OFF	ON
0	1	ON	OFF
1	0	ON	OFF
1	1	OFF	ON

Table 4 Operating Ranges*

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	VDD	2.7	3.3	3.6	V
Supply Current	IDD	-	180	-	μΑ
Digital Input Control (LS/CTRL)	High	1.0	-	3.3	V
Digital input control (ES/CTRE)	Low	0	-	0.7	V
Operating Temperature Range	То	-40	+25	+105	°C
RF Input Power, CW (Active Port) 2.35GHz, 3.5GHz, 4.9GHz (any port)	PMax,Active	-	-	36	dBm
RF Input Power, CW (Terminated Port) 2.35GHz, 3.5GHz, 4.9GHz (RF1, RF2 port)	PMax,Term	-	-	26	dBm

^{*}Specifications are not guaranteed over all recommended operating conditions.

Table 5 Absolute Maximum Ratings

Parameter		Symbol	Min	Max	Unit	
Supply Voltage		VDD	-0.3	3.6	V	
Digital Input Voltage		LS/CTRL	-0.3	3.6	V	
Maximum Input Power, CW (+25°C)		-	-	Input P1dB	dBm	
Storage Temperature range		-	-65	+150	°C	
	RF pins		-	-	2500	V
ESD	пвіч	All pins	-	-	2000	V
	CDM	All pins	-	-	1000	V

BeRex ●website: <u>www.berex.com</u>

Typical Performances

Typical conditions are at VDD = 3.3V, T_A = 25°C, LS/CTRL Low = 0V, LS/CTRL High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 4 Insertion Loss vs VDD (RFC - RF1)

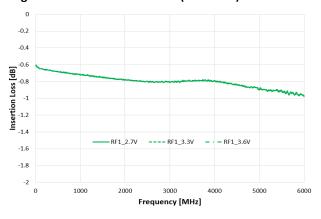


Figure 5 Insertion Loss vs VDD (RFC - RF2)

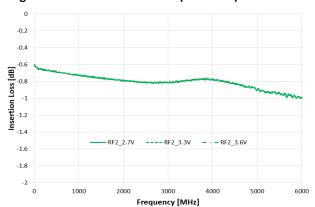


Figure 6 Insertion Loss vs Temp (RFC - RF1)

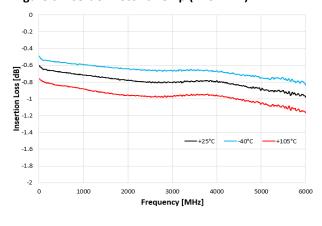


Figure 7 Insertion Loss vs Temp (RFC - RF2)

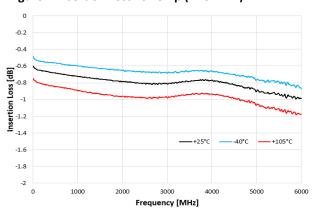


Figure 8 Return Loss vs VDD (RFC, RFx) @ On State

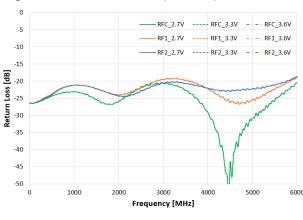
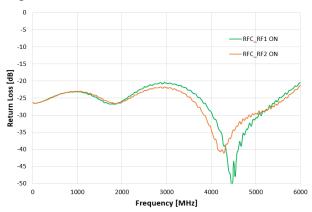



Figure 9 Return Loss @RFC: RF1 ON vs RF2 ON

BeRex

•website: www.berex.com

Typical Performances

Typical conditions are at VDD = 3.3V, T_A = 25°C, LS/CTRL Low = 0V, LS/CTRL High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 10 Return Loss vs Temp (RFC)

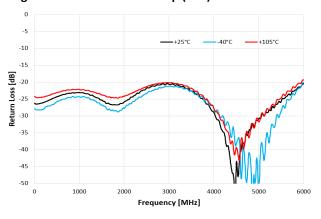
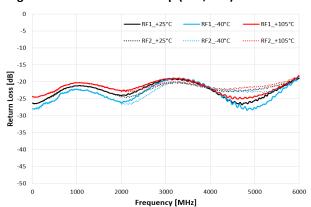



Figure 11 Return Loss vs Temp (RF1, RF2)

Figure 12 Terminated Port Return Loss

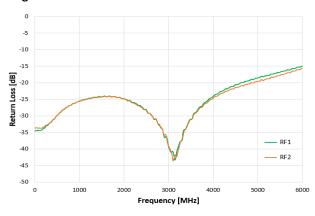


Figure 13 Terminated Port Return Loss vs Temp (RF1)

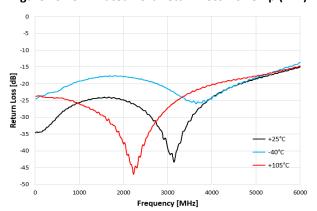


Figure 14 Isolation vs VDD (RFC to RFx)

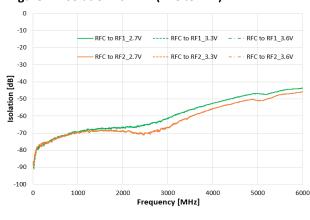
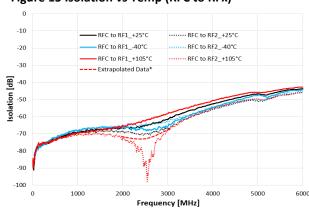



Figure 15 Isolation vs Temp (RFC to RFx)

* Extrapolated data is the actual performance of part excluding the resonance of the Evaluation board.

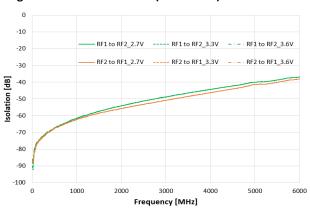
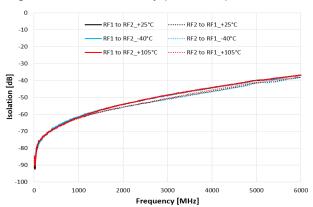
BeRex

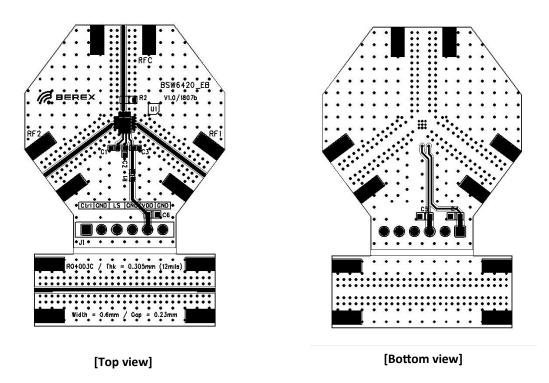
•website: www.berex.com

Typical Performances

Typical conditions are at VDD = 3.3V, T_A = 25°C, LS/CTRL Low = 0V, LS/CTRL High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 16 Isolation vs VDD (RFx to RFx)


Figure 17 Isolation vs Temp (RFx to RFx)

Ver. 1.03

Evaluation Board

Figure 18 Evaluation Board Layout

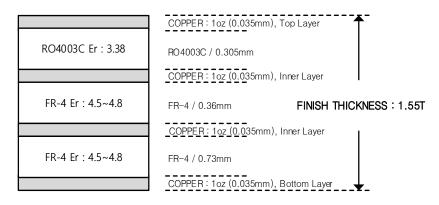
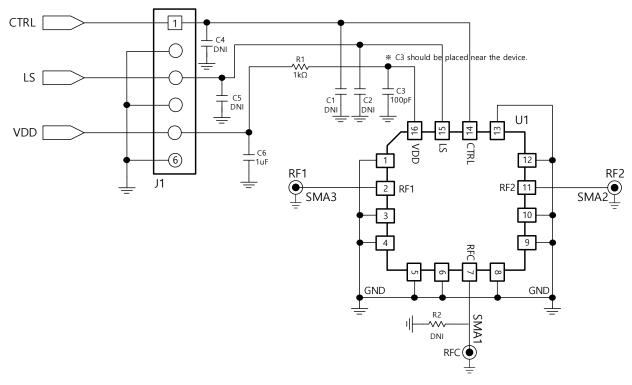


Figure 19 Evaluation Board PCB Layer Information


BeRex

•website: www.berex.com

•email: sales@berex.com

Ver. 1.03

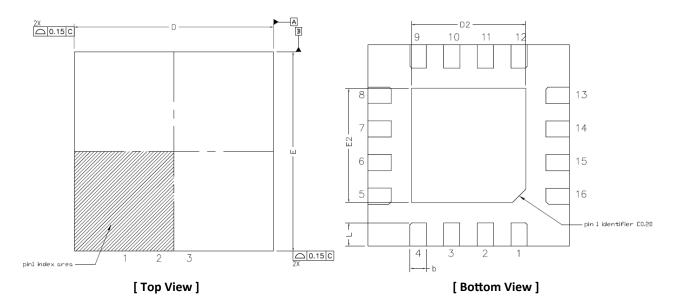
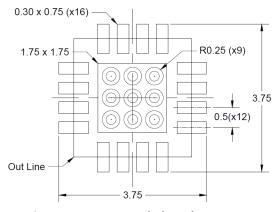

Figure 20 Evaluation Board Schematic

Table 6 Bill of Material - Evaluation Board

No.	Ref Des	Part Qty	Part Number	Remark
1	C3	1	CAP 1005 100pF J 50V	C3 should be placed rear the BSW6420
2	C6	1	CAP 1608 1uF J 50V	
3	R1	1	RES 1608 J 1Kohm	
4	C1, C2	2	CAP 1608 DNI	
5	R2	1	RES 1608 DNI	
6	C4, C5	2	CAP 1005 DNI	
7	J1	1	6 Pin Header	
8	RFC, RF1, RF2	3	SMA_END_LAUNCH	
9	U1	1	BSW6420	

Package Outline Drawing



A A 3

[Side View]

S		Common				
- <u>S</u> M C		DIMENSIONS DIMENSIONS INCH			INCH	
[MIN.	N□M.	MAX.	MIN. NOM. MA		MAX.
Α	0.70	0.75	0.80	0.028	0.030	0.031
A1	0.00	0.02	0.05	0.000	0,001	0.002
АЗ	0.8	203 REF	-	0.008 REF		
b	0.18	0.24	0.30	0,007	0,009	0.012
D	2,90	3.00	3.10	0.114	0,118	0.122
Ε	2,90	3.00	3,10	0.114	0,118	0.122
DS	1,65	1.70	1.75	0,065	0,067	0,069
E2	1,65	1.70	1.75	0.065	0,067	0,069
9	0,	50 BSC.		0.0	050 B20	5
L	0.30	0,35	0.40	0.012	0.014	0.016

Figure 21 Package Outline Drawing

Figure 22 Recommended Land Pattern

BeRex

// 0.10 C

0.08 C

•website: www.berex.com

●email: <u>sales@berex.com</u>

Tape & Reel

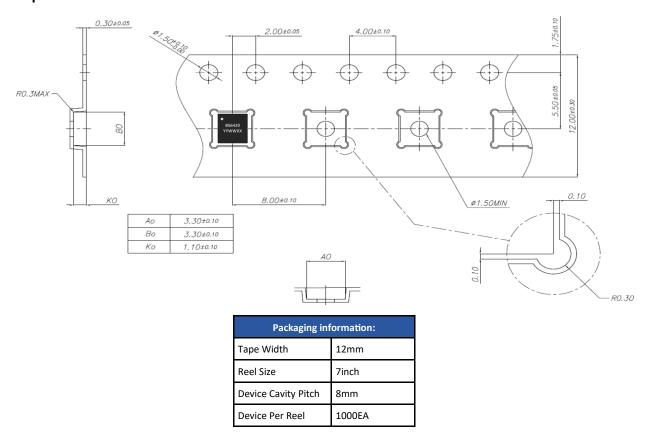


Figure 23 Tape & Reel

Package Marking

	Marking information:	
BS	BeRex RF Switch	
6420	he name of switch	
YY	ear ear	
ww	Work Week	
XX	Wafer Lot Number	

Figure 24 Package Marking

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

	ESD information1:
Rating	Class 2 (2000V)
Test	Human Body Model (HBM)
Standard	JS-001-2017

	ESD information2:
Rating	Class C3 (1000V)
Test	Charged Device Model (CDM)
Standard	JS-001-2017

	MSL information:
Rating	Level 1 at +260°C convection reflow
Standard	JEDEC Standard J-STD-020

Proper ESD procedures should be followed when handling the device.

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

2 N 9 6 F

BeRex ●website: <u>www.berex.com</u>