

50MHz-9000MHz

BSW6420

Product Description

The BSW6420 is an absorptive SPDT 50Ω matched RF switch supporting bandwidths up to 9GHz. Its high linearity performance across the temperature range makes it ideally suited for use in 3G/4G/5G wireless infrastructure and 802.11 a/n/ac/ax applications where high power and excellent performance is required.

The BSW6420 is designed with robust ESD protection circuits at all pins and packaged in an industry standard, fully RoHS2-compliant, 16-Lead, 3mm x 3mm x 0.75mm TQFN package.

The BSW6420 does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor.

A functional block diagram is shown in Figure 1.

Block Diagram

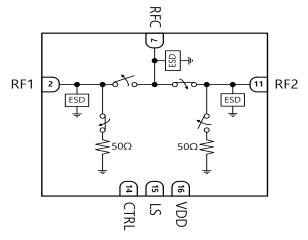


Figure 1. Functional Block Diagram

Applications

- Wireless 3G/4G/5G Infrastructure
- WLAN 802.11 a/n/ac/ax

Package Type

3mm x 3mm x 0.75mm, 16-Lead TQFN Package Figure 2. Package Type

Device Features

- Output frequency range : 50 MHz to 9.0 GHz
- Supply Voltage : 2.7V to 3.6V
- Constant impedance during switching transition : Return loss 10dB
- Low Insertion Loss
 - : 0.75dB @ 2.35GHz
 - : 0.82dB @ 3.5GHz
 - : 0.81dB @ 4.9GHz
 - : 1.39dB @ 7.2GHz
- High Isolation
 - RFC to RFx
 - : 67dB @ 2.35GHz
 - : 60dB @ 3.5GHz
 - : 50dB @ 4.9GHz : 44dB @ 7.2GHz
 - RFx to RFx
 - : 54dB @ 2.35GHz
 - : 49dB @ 3.5GHz
 - : 42dB @ 4.9GHz
 - : 39dB @ 7.2GHz
- High Input 1dB Compression
 - : 40.5dBm @ 2.35GHz
 - : 41dBm @ 3.5GHz
 - : 41dBm @ 4.9GHz
- High IIP3
 - : 63.5dBm @ 2.35GHz
 - : 66dBm @ 3.5GHz
 - : 66.5dBm @ 4.9GHz
- Switching Time : 530 to 540ns
- Operating temperature range : -40°C to +105°C
- ESD, HBM
 - : 2.5kV @ RF pins to GND
 - : 2.0kV @ All pins
- 16-Lead TQFN package : 3.0mm x 3.0mm x 0.75mm
- Lead-free/RoHS2-compliant TQFN SMT Package

Specifications and information are subject to change without notice. BeRex is a trademark of BeRex.

50MHz-9000MHz

Electrical Specifications

Typical conditions are at VDD = 3.3V, $T_A = 25^{\circ}$ C, LS/CTRL Low = 0V, LS/CTRL High = 3.3V, $Z_L = 50\Omega$, Excluding SMA Connector and PCB loss⁽¹⁾, unless otherwise noted.

Table 1. Electrical Specifications

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating Frequency			50		9000	MHz
		1GHz		0.68		
		2GHz		0.74		
		3GHz		0.81		
		4GHz		0.84		
Insertion Loss	RFC - RFx	5GHz		0.82		dB
		6GHz		1.09		
		7GHz		1.39		
		8GHz		1.33		
		9GHz		1.23		
		1GHz		69		
		2GHz		67		
		3GHz		64		
		4GHz		56		
Isolation	RFC - RFx	5GHz		50		dB
		6GHz		46		
		7GHz		41		
		8GHz		36		
		9GHz		30		
		1GHz		62		
		2GHz		56		
		3GHz		51		
		4GHz		47		
Isolation	RFx - RFx	5GHz		42		dB
		6GHz		38		
		7GHz		35		
		8GHz		31		
		9GHz		28		
Return Loss		50MHz – 4GHz		20		
(Active Port)	RFC, RF1, RF2	4GHz – 6GHz		15		dB
(Active Forty		6GHz – 9GHz		10		
Return Loss		50MHz – 4GHz		20		
(Terminated Port)	RFC, RF1, RF2	4GHz – 6GHz		15		dB
(reminated rong		6GHz – 9GHz		10		
Return Loss during switching transition	RFC, RF1, RF2	50MHz – 9GHz		10		dB
		2.35GHz		40.5		
Input P1dB	RFC - RFx	3.5GHz		41.0		dBm
·		4.9GHz		41.0		
		2.35GHz		63.5		
Input IP3 ⁽²⁾	RFC - RFx	3.5GHz		66.0		dBm
		4.9GHz		66.5		
		2.35GHz		108		
Input IP2 ⁽²⁾	RFC - RFx	3.5GHz		109		dBm
		4.9GHz		110		

(1) Excluding SMA Connector and PCB loss.

1GHz(0.14dB), 2GHz(0.21dB), 3GHz(0.24dB), 4GHz(0.28dB), 5GHz(0.34dB), 6GHz(0.39dB), 7GHz(0.48dB), 8GHz(0.62dB), 9GHz(0.76dB) (2) Tone Power is 18dBm and Tone spacing is 20KHz.

•email: <u>sales@berex.com</u>

50MHz-9000MHz

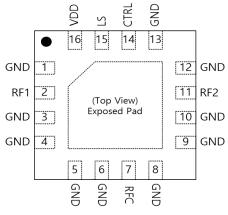
Electrical Specifications

Typical conditions are at VDD = 3.3V, $T_A = 25^{\circ}$ C, LS/CTRL Low = 0V, LS/CTRL High = 3.3V, $Z_L = 50\Omega$, Excluding SMA Connector and PCB loss⁽¹⁾, unless otherwise noted.

Table 1. Electrical Specifications (Cont.)

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating Frequency			50		9000	MHz
2 nd Harmonic ⁽³⁾	RFC - RFx	2.35GHz 3.5GHz 4.9GHz		97 97 100		dBc
3 rd Harmonic ⁽³⁾	RFC - RFx	2.35GHz 3.5GHz 4.9GHz		100 105 105		dBc
Switching Time	RFC - RFx	50% control to 90% RF 50% control to 10% RF		540 530		ns
Settling Time	RFC - RFx	50% CTRL to 0.05dB final value Rising Edge 50% CTRL to 0.05dB final value Falling Edge		560 550		ns
Maximum Spurious Level	RFC - RFx	50MHz – 200MHz > 200MHz ⁽⁴⁾		-125 < -145		dBm/10Hz

(3) Tone Power is 18dBm.


(4) No spurious signals were detected above 200MHz.

50MHz-9000MHz

BSW6420

Product Description

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
2	RF1	RF1 Port
7	RFC	RF Common Port
11	RF2	RF2 Port
14	CTRL	Digital Control Logic Input
15	LS	Logic Select (Definition for the CTRL pin, See Table3)
16	VDD	Supply Voltage
1,3,4,5,6,8,9,10, 12,13	GND	Ground
Pad	Exposed Pad	Ground

Figure 3. Pin Configuration

Table 3. Control Truth Table

LS	CTRL	RFC-RF1	RFC-RF2
0	0	OFF	ON
0	1	ON	OFF
1	0	ON	OFF
1	1	OFF	ON

Table 4. Operating Ranges*

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	VDD	2.7	3.3	3.6	V
Supply Current	IDD	-	180	-	μA
	High	1.0	-	3.3	V
Digital Input Control (LS/CTRL)	Low	0	-	0.7	V
Operating Temperature Range	То	-40	+25	+105	°C
RF Input Power, CW (Active Port) 2.35GHz, 3.5GHz, 4.9GHz (any port)	PMax,Active	-	-	36	dBm
RF Input Power, CW (Terminated Port) 2.35GHz, 3.5GHz, 4.9GHz (RF1, RF2 port)	PMax,Term	-	-	26	dBm

*Specifications are not guaranteed over all recommended operating conditions.

Table 5. Absolute Maximum Ratings

	Parameter		Symbol	Min	Мах	Unit
	Supply Voltage		VDD	-0.3	3.6	V
[Digital Input Voltage		LS/CTRL	-0.3	3.6	V
Maximu	Maximum Input Power, CW (+25°C)		-	-	Input P1dB	dBm
Stor	Storage Temperature range		-	-65	+150	°C
	НВМ	RF pins to GND	-	-	2500	V
ESD	пылі	All pins	-	-	2000	V
	CDM	All pins	_	-	1000	V

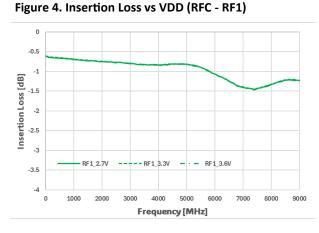
BeRex

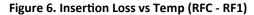
•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

Specifications and information are subject to change without notice. BeRex is a trademark of BeRex.

All other trademarks are the property of their respective owners. $\, \mathbb{O} \,$ 2024 BeRex




50MHz-9000MHz

BSW6420

Typical Performances

Typical conditions are at VDD = 3.3V, $T_A = 25^{\circ}$ C, LS/CTRL Low = 0V, LS/CTRL High = 3.3V, $Z_L = 50\Omega$, Excluding SMA Connector and PCB loss, unless otherwise noted.

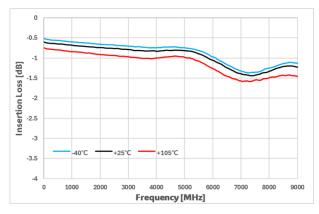
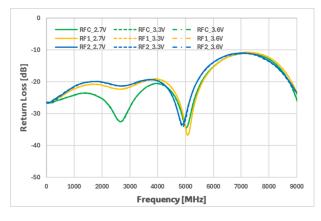
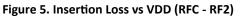




Figure 8. Return Loss vs VDD (RFC, RFx) @ On State



Figure 7. Insertion Loss vs Temp (RFC - RF2)

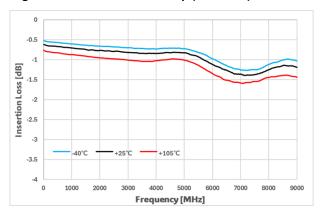
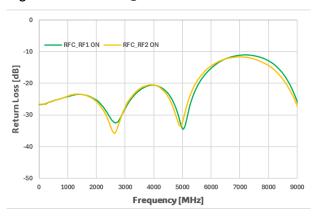



Figure 9. Return Loss @RFC : RF1 ON vs RF2 ON

•website: www.berex.com

•email: sales@berex.com

Specifications and information are subject to change without notice. BeRex is a trademark of BeRex. All other trademarks are the property of their respective owners. © 2024 BeRex

50MHz-9000MHz

BSW6420

Typical Performances

Typical conditions are at VDD = 3.3V, $T_A = 25^{\circ}$ C, LS/CTRL Low = 0V, LS/CTRL High = 3.3V, $Z_L = 50\Omega$, Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 10. Return Loss vs Temp (RFC)

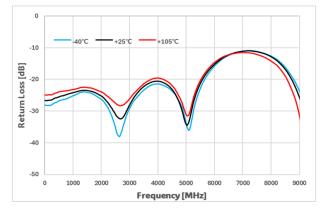


Figure 12. Terminated Port Return Loss

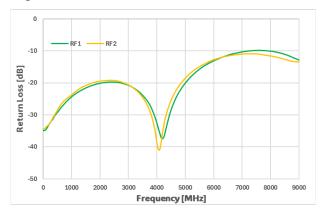


Figure 14. Isolation vs VDD (RFC to RFx)

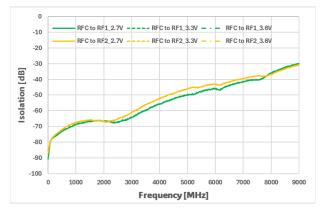


Figure 11. Return Loss vs Temp (RF1, RF2)

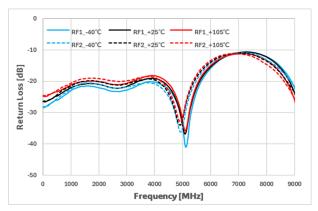


Figure 13. Terminated Port Return Loss vs Temp (RF1)

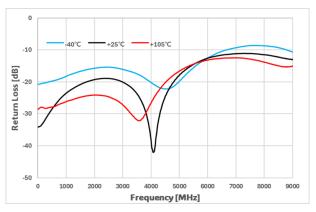
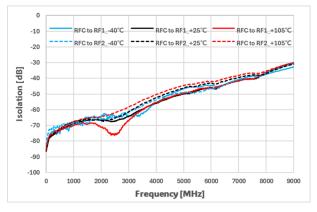



Figure 15. Isolation vs Temp (RFC to RFx)

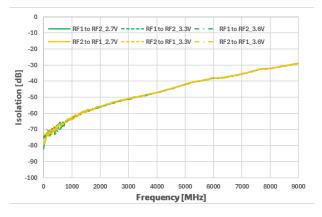
BeRex

•website: <u>www.berex.com</u>

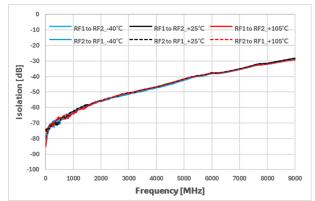
•email: <u>sales@berex.com</u>

6

Specifications and information are subject to change without notice. BeRex is a trademark of BeRex. All other trademarks are the property of their respective owners. © 2024 BeRex


BSW6420

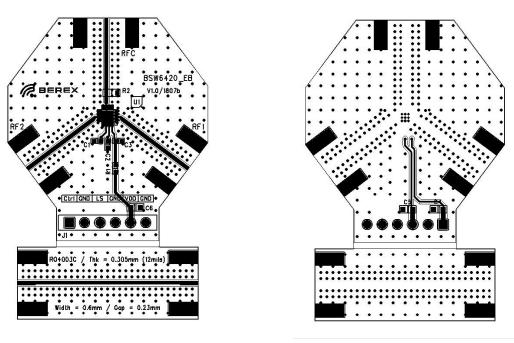
50MHz-9000MHz


Typical Performances

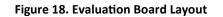
Typical conditions are at VDD = 3.3V, $T_A = 25^{\circ}$ C, LS/CTRL Low = 0V, LS/CTRL High = 3.3V, $Z_L = 50\Omega$, Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 16. Isolation vs VDD (RFx to RFx)

Figure 17. Isolation vs Temp (RFx to RFx)



BSW6420


50MHz-9000MHz

Evaluation Board

[Top view]

[Bottom view]

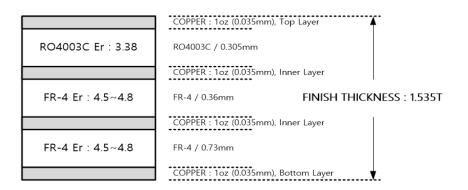


Figure 19. Evaluation Board PCB Layer Information

BSW6420

High Isolation Absorptive SPDT RF switch

50MHz-9000MHz

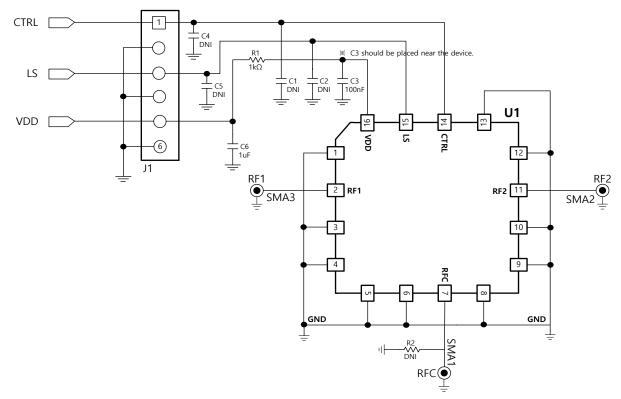
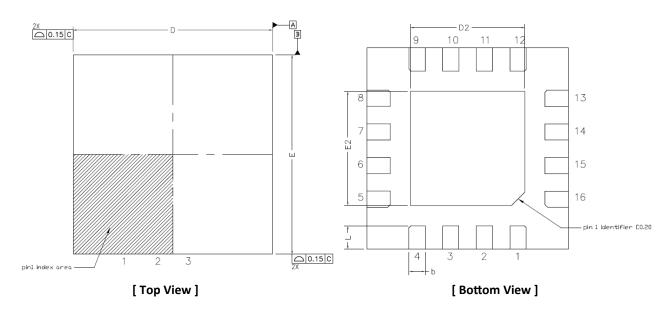


Figure 20. Evaluation Board Schematic

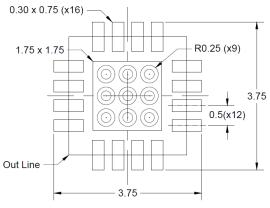
No.	Ref Des	Part Qty	Part Number	Remark
1	C3	1	CAP 1005 100nF J 50V	C3 should be placed near the BSW6420
2	C6	1	CAP 1608 1uF J 50V	
3	R1	1	RES 1608 J 1kohm	
4	C1, C2	2	CAP 1608 DNI	
5	R2	1	RES 1608 DNI	
6	C4, C5	2	CAP 1005 DNI	
7	J1	1	6 Pin Header	
8	RFC, RF1, RF2	3	SMA_END_LAUNCH	
9	U1	1	BSW6420	


Table 6. Bill of Material - Evaluation Board

50MHz-9000MHz

BSW6420

Package Outline Drawing



[Side View]

ΥN	Common					
-Σm□	DIMENSIONS MILLIMETER			DIMEN	SIONS	INCH
Ē	MIN.	N□M.	MAX.	MIN.	NDM.	MAX.
Α	0,70	0.75	0.80	0.028	0.030	0.031
A1	0,00	0.02	0.05	0,000	0,001	0,002
AЗ	0.203 REF			0,	008 REF	-
0	0.18	0,24	0,30	0,007	0,009	0.012
D	2,90	3.00	3.10	0.114	0,118	0,122
Е	2,90	3,00	3,10	0,114	0,118	0,122
DS	1,65	1.70	1,75	0,065	0,067	0,069
E5	1,65	1.70	1,75	0,065	0,067	0,069
e	0,50 BSC.			0,0	DSO B20	2
L	0,30	0,35	0,40	0,012	0.014	0.016

Figure 21. Package Outline Drawing

BeRex

Specifications and information are subject to change without notice. BeRex is a trademark of BeRex. All other trademarks are the property of their respective owners. © 2024 BeRex

BSW6420 50MHz-9000MHz

Tape & Reel

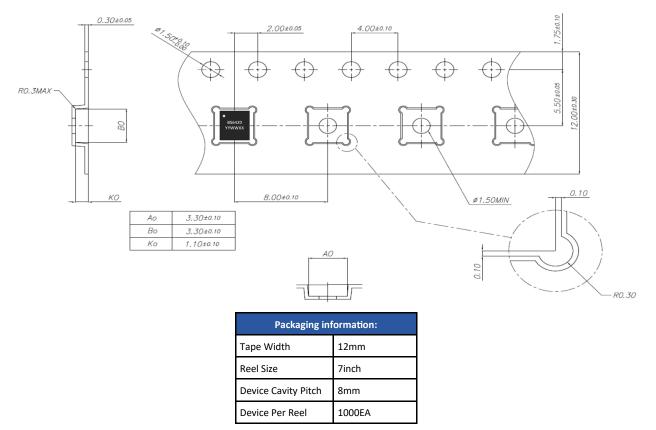


Figure 23. Tape & Reel

Package Marking

	Marking information:		
BS	BeRex RF Switch		
6420	The name of switch		
YY	Year		
ww	Work Week		
хх	Wafer Lot Number		

Figure 24. Package Marking

Lead plating finish

100% Tin Matte finish

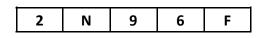
(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD information1 :		
Rating	Class 2 (2000V)	
Test	Human Body Model (HBM)	
Standard	JS-001-2017	

MSL information:		
Rating	Level 1 at +260°C convection reflow	
Standard	JEDEC Standard J-STD-020	

ESD information2 :		
Rating	Class C3 (1000V)	
Test	Charged Device Model (CDM)	
Standard	JESD22-C101F:2013	


Proper ESD procedures should be followed when handling the device.

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

BeRex

•website: <u>www.berex.com</u>

•email: sales@berex.com

12

Specifications and information are subject to change without notice. BeRex is a trademark of BeRex. All other trademarks are the property of their respective owners. © 2024 BeRex