

#### **Product Description**

The BSW6421 is a reflective SPDT RF switch that can be used in high power and good performance WiMAX 802.16, WLAN 802.11 a/b/g/n/ac/ax and DOCSIS 3.0/3.1 applications.

This device is packaged in RoHS-compliant with 1.5x1.5mm, 6-lead UDFN package. It must be used with back side ground soldering.

The BSW6421 has robust ESD protection circuits at all pins and temperature performance (operating temperature range :  $-40 \sim +105$ °C).

This switch does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor. This device also has a high linearity performance over all temperature range such as IIP3, IIP2.

A functional block diagram is shown in Figure 1.

#### **Block Diagram**

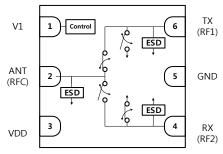



Figure 1 Functional Block Diagram

#### **Applications**

- WiMAX 802.16
- WLAN 802.11 a/b/g/n/ac/ax
- DOCSIS 3.0/3.1
- Drone
- NFC
- Bluetooth
- Smart Card
- Wireless Infrastructure
- Remote keyless entry
- Telematics / Infotainment
- Two-way radios
- Wireless control systems
- GPS/Navigation

#### **Package Type**



6-Lead 1.5x1.5mm, UDFN Package Figure 2 Package Type

#### **Device Features - Common**

• Output frequency range: 5 MHz to 6.0 GHz

Supply Voltage: 2.7V to 3.6VESD protection: 2.5kV @ all pins

6-lead DFN package: 1.5mm x 1.5mm x 0.5mm
Operating temperature range: -40°C - +85°C

#### Device Features - $50\Omega$

- Low insertion loss
  - : 0.75dB @ 2.45GHz
  - : 0.95dB @ 5.75GHz
- High isolation
  - : 50dB @ 2.45GHz
  - : 39dB @ 5.75GHz
- Input 1 dB output compression (ANT Tx)
  - : 39dBm @ 2.45GHz
  - : 37dBm @ 5.75GHz
- High IIP3 (ANT Tx)
  - : 63dBm @ 2.45GHz
  - : 68dBm @ 5.75GHz

#### Device Features - 75Ω

- Low insertion loss
  - : 0.46dB @ 204MHz
- High isolation
  - : 61dB @ 204MHz
- High IIP3
  - : 69dBm @ 633MHz
- 2<sup>nd</sup> / 3<sup>rd</sup> Harmonic
  - : 107dBc / 122dBc @ 633MHz

**BeRex** 

•website: www.berex.com

5MHz-6000MHz

## Electrical Specifications - $50\Omega$

Typical conditions are at VDD = 3.3V,  $T_A$  = 25°C, V1 Low = 0V, V1 High = 3.3V,  $Z_L$  = 50 $\Omega$ , Excluding SMA Connector and PCB loss, unless otherwise noted.

Table 1 Electrical Specifications -  $50\Omega$ 

| Parameter           | Path        | Condition                 | Min | Тур  | Max  | Unit  |
|---------------------|-------------|---------------------------|-----|------|------|-------|
| Operating Frequency |             |                           | 5   |      | 6000 | MHz   |
|                     |             | 13.56MHz                  |     | 0.58 |      |       |
|                     |             | 1GHz                      |     | 0.69 |      |       |
|                     |             | 2GHz                      |     | 0.74 |      |       |
|                     | ANT         | 2.45GHz                   |     | 0.75 |      |       |
| Insertion Loss      | ANT - Tx    | 3GHz                      |     | 0.80 |      | dB    |
|                     | ANT - Rx    | 4GHz                      |     | 1.01 |      |       |
|                     |             | 5GHz                      |     | 0.95 |      |       |
|                     |             | 5.75GHz                   |     | 0.95 |      |       |
|                     |             | 6GHz                      |     | 1.15 |      |       |
|                     |             | 13.56MHz                  |     | 80   |      |       |
|                     |             | 1GHz                      |     | 55   |      |       |
|                     |             | 2GHz                      |     | 51   |      |       |
|                     | ANT To      | 2.45GHz                   |     | 50   |      |       |
| Isolation           | ANT - Tx    | 3GHz                      |     | 47   |      | dB    |
|                     | ANT - Rx    | 4GHz                      |     | 46   |      |       |
|                     |             | 5GHz                      |     | 44   |      |       |
|                     |             | 5.75GHz                   |     | 39   |      |       |
|                     |             | 6GHz                      |     | 35   |      |       |
|                     |             | 13.56MHz                  |     | 80   |      |       |
|                     |             | 1GHz                      |     | 54   |      |       |
|                     |             | 2GHz                      |     | 48   |      |       |
|                     | T . D.      | 2.45GHz                   |     | 46   |      |       |
| Isolation           | Tx - Rx     | 3GHz                      |     | 42   |      | dB    |
|                     | Rx - Tx     | 4GHz                      |     | 38   |      |       |
|                     |             | 5GHz                      |     | 33   |      |       |
|                     |             | 5.75GHz                   |     | 30   |      |       |
|                     |             | 6GHz                      |     | 28   |      |       |
| Return Loss         | ANT, Tx, Rx | 5MHz – 6GHz (Active port) |     | 20   |      | dB    |
|                     |             | 13.56MHz                  |     | 34   |      |       |
|                     | ANT - Tx    | 2.45GHz                   |     | 39   |      |       |
| Input P1dB          |             | 5.75GHz                   |     | 37   |      | dBm   |
| IIIhat Liap         |             | 13.56MHz                  |     | 34   |      | ubili |
|                     | ANT - Rx    | 2.45GHz                   |     | 39   |      |       |
|                     |             | 5.75GHz                   |     | 27   |      |       |

 $<sup>\</sup>ensuremath{^*}$  Tone Power is 18dBm and Tone spacing is 20KHz.

<sup>\*\*</sup> DC transient test at RF all ports (ANT, Tx, Rx) when V1 is switched from High to Low or from Low to High in a 50Ω setup. Excluding SMA Connector and PCB loss. 1GHz (0.12dB), 2GHz (0.20dB), 3GHz (0.27dB), 4GHz (0.35dB), 5GHz (0.51dB), 6GHz (0.52dB)

5MHz-6000MHz

#### Electrical Specifications - $50\Omega$

Typical conditions are at VDD = 3.3V,  $T_A$  = 25°C, V1 Low = 0V, V1 High = 3.3V,  $Z_L$  = 50 $\Omega$ , Excluding SMA Connector and PCB loss, unless otherwise noted.

Table 2 Electrical Specifications -  $50\Omega$ 

| Parameter                | Path     | Condition                                   | Min | Тур | Max | Unit |
|--------------------------|----------|---------------------------------------------|-----|-----|-----|------|
|                          | ANT - Tx | 2.45GHz                                     |     | 63  |     |      |
| Innut ID2*               | ANI - IX | 5.75GHz                                     |     | 68  |     | dBm  |
| Input IP3*               | ANT - Rx | 2.45GHz                                     |     | 56  |     | ивпі |
|                          | ANI - KX | 5.75GHz                                     |     | 67  |     |      |
|                          | ANT - Tx | 2.45GHz                                     |     | 105 |     |      |
| Input IP2*               | ANT - IX | 5.75GHz                                     |     | 110 |     | dBm  |
| input iP2                | ANT - Rx | 2.45GHz                                     |     | 90  |     | ивпі |
|                          | ANI - KX | 5.75GHz                                     |     | 105 |     |      |
|                          | ANT - Tx | 2.45GHz                                     |     | 95  |     |      |
| 2 <sup>nd</sup> Harmonic | ANT - IX | 5.75GHz                                     |     | 100 |     | dBc  |
| 2 Harmonic               | ANT - Rx | 2.45GHz                                     |     | 78  |     | UBC  |
|                          | ANI - KX | 5.75GHz                                     |     | 95  |     |      |
|                          | ANT - Tx | 2.45GHz                                     |     | 100 |     |      |
| 3 <sup>rd</sup> Harmonic | ANT - IX | 5.75GHz                                     |     | 110 |     | dBc  |
| 3 Harmonic               | ANT - Rx | 2.45GHz                                     |     | 85  |     | UBC  |
|                          | ANI - KX | 5.75GHz                                     |     | 105 |     |      |
| Video Feedthrough**      |          | 5ns rise-time pulse                         |     | 25  |     | mVpp |
| Conitabia a Tima         | ANT - Tx | 50% control to 90% RF                       |     | 500 |     |      |
| Switching Time           | ANT - Rx | 50% control to 10% RF                       |     | 400 |     | ns   |
| Cattling Times           | ANT - Tx | 50% CTRL to 0.05dB final value Rising Edge  |     | 530 |     |      |
| Settling Time            | ANT - Rx | 50% CTRL to 0.05dB final value Falling Edge |     | 470 |     | ns   |

 $<sup>\</sup>mbox{\ensuremath{^{\ast}}}$  Tone Power is 18dBm and Tone spacing is 20KHz.

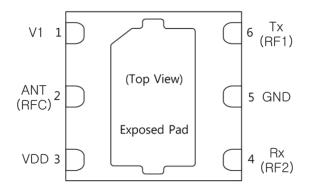
<sup>\*\*</sup> DC transient test at RF all ports (ANT, Tx, Rx) when V1 is switched from High to Low or from Low to High in a 50Ω setup. Excluding SMA Connector and PCB loss. 1GHz (0.12dB), 2GHz (0.20dB), 3GHz (0.27dB), 4GHz (0.35dB), 5GHz (0.51dB), 6GHz (0.52dB)

5MHz-6000MHz

## Electrical Specifications - $75\Omega$

Typical conditions are at VDD = 3.3V,  $T_A$  = 25°C, V1 Low = 0V, V1 High = 3.3V,  $Z_L$  = 75 $\Omega$ , Excluding SMA Connector and PCB loss, unless otherwise noted.

#### Table 3 Electrical Specifications - $75\Omega$


| Parameter                | Path       | Condition                 | Min | Тур  | Max  | Unit |
|--------------------------|------------|---------------------------|-----|------|------|------|
| Operating Frequency      | RFC - RFx  |                           | 5   |      | 6000 | MHz  |
|                          |            | 5MHz                      |     | 0.44 |      |      |
|                          |            | 204MHz                    |     | 0.46 |      |      |
| Insertion Loss           | RFC - RFx  | 1218MHz                   |     | 0.63 |      | dB   |
|                          |            | 1700MHz                   |     | 0.61 |      |      |
|                          |            | 1794MHz                   |     | 0.58 |      |      |
|                          |            | 5MHz                      |     | 79   |      |      |
|                          |            | 204MHz                    |     | 61   |      |      |
| Isolation                | RFC to RFx | 612MHz                    |     | 53   |      | dB   |
|                          |            | 1218MHz                   |     | 46   |      |      |
|                          |            | 1794MHz                   |     | 37   |      |      |
|                          |            | 5MHz                      |     | 83   |      |      |
|                          |            | 204MHz                    |     | 60   |      |      |
| Isolation                | RFx to RFx | 612MHz                    |     | 52   |      | dB   |
|                          |            | 1218MHz                   |     | 50   |      |      |
|                          |            | 1794MHz                   |     | 47   |      |      |
| Return Loss              | RFC        | 5MHz – 3GHz (Active port) | 15  | 20   |      | dB   |
| Neturi Loss              | RFx        | 5MHz – 3GHz (Active port) | 15  | 20   |      | dB   |
| Input P1dB               | RFC - RFx  | 50Ω Impedance @2140MHz    |     | 33   |      | dBm  |
| Input IP3* (note)        | RFC - RFx  | 633MHz (Pin=18dBm/tone)   |     | 69   |      | dBm  |
| Input IP2* (note)        | RFC – RFx  | 633MHz (Pin=18dBm/tone)   |     | 108  |      | dBm  |
| 2 <sup>nd</sup> Harmonic | RFC – RFx  | 633MHz (Pin=25dBm)        |     | 107  |      | dBc  |
| 3 <sup>rd</sup> Harmonic | RFC – RFx  | 633MHz (Pin=25dBm)        |     | 122  |      | dBc  |
| Video Feedthrough**      |            | 5ns rise-time pulse       |     | 25   |      | mVpp |
| Switching Time           | DEC DEV    | 50% control to 90% RF     |     | 500  |      | nc   |
| Switching Time           | RFC – RFx  | 50% control to 10% RF     |     | 400  |      | ns   |

<sup>\*</sup> Tone spacing is 20KHz.

<sup>\*\*</sup> DC transient test at RF all ports (RFC, RF1, RF2) when V1 is switched from High to Low or from Low to High in a 75Ω setup. Excluding SMA Connector and PCB loss. 5MHz(0.02dB), 204MHz(0.05dB), 1218MHz(0.13dB), 1700MHz(0.17dB), 1794MHz(0.19dB)



## **Product Description**



**Figure 3 Functional Block Diagram** 

#### **Table 4 Pin Descriptions**

| No. | Pin Name    | Descriptions                  |
|-----|-------------|-------------------------------|
| 1   | V1          | Digital Control Logic Input   |
| 2   | ANT (RFC)   | ANT RF port (RFC).            |
| 3   | VDD         | Supply Voltage (Typical 3.3V) |
| 4   | Rx (RF2)    | Rx RF port (RF2).             |
| 5   | GND         | Ground                        |
| 6   | Tx (RF1)    | Tx RF port (RF1).             |
| Pad | Exposed Pad | Ground                        |

#### **Table 5 V1 Control Truth Table**

| V1 | ANT - Tx | ANT - Rx |
|----|----------|----------|
| 0  | OFF      | ON       |
| 1  | ON       | OFF      |

#### **Table 6 Operating Ranges**

| Parameter                                 |             | Symbol  | Min | Тур | Max | Unit |
|-------------------------------------------|-------------|---------|-----|-----|-----|------|
| Supply Voltage                            | e           | VDD     | 2.7 | 3.3 | 3.6 | V    |
| Supply Curren                             | t           | IDD     | -   | 140 | -   | μΑ   |
| Digital Innut Contro                      | SL (V/1)    | V1 High | 1.0 | -   | 3.3 | V    |
| Digital Input Contro                      | DI (VI)     | V1 Low  | 0   | -   | 0.7 | V    |
| Operating Temperatu                       | re Range    | To      | -40 | +25 | +85 | °C   |
| RF Input Power, CW                        | TX(RFC-RF1) | -       | -   | =   | 27  | dBm  |
| Freq.=2.45GHz, 5.75GHz $Z_L$ =50 $\Omega$ | RX(RFC-RF2) | -       | -   | -   | 15  | dBm  |

#### **Table 7 Absolute Maximum Ratings**

|         | Parameter         |           | Symbol | Min  | Max        | Unit |
|---------|-------------------|-----------|--------|------|------------|------|
|         | Supply Voltage    |           | VDD    | -0.3 | 3.6        | V    |
| Digi    | tal Input Voltage | (V1)      | V1     | -0.3 | 3.6        | V    |
| Maximur | n Input Power, CV | V (+25°C) | -      | -    | Input P1dB | dBm  |
| Stora   | ige Temperature i | range     | -      | -65  | +150       | °C   |
| ESD     | НВМ               | All pins  | -      | -    | 2500       | V    |
| ESD     | CDM               | All pins  | -      | =    | 1000       | V    |

BeRex

•website: www.berex.com



## Typical Performances - 50Ω

Typical conditions are at VDD = 3.3V,  $T_A$  = 25°C, V1 Low = 0V, V1 High = 3.3V,  $Z_L$  = 50 $\Omega$ , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 4 Insertion Loss vs. Vdd (RFC - RFx)

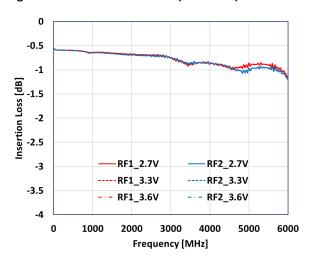



Figure 5 Insertion Loss vs. Temp (RFC - RFx)

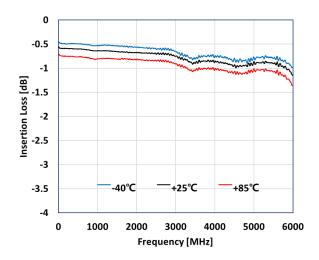



Figure 6 Return Loss (RFC,RFx)

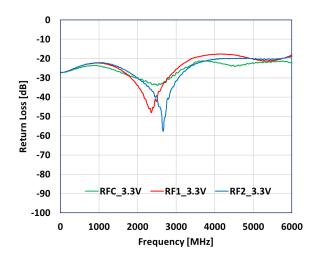
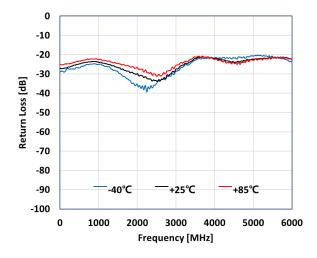
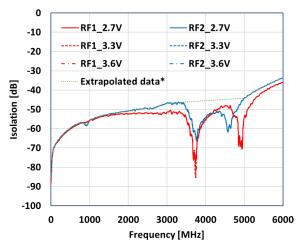




Figure 7 Return Loss vs. Temp (RFC)






## Typical Performances - 50Ω

Typical conditions are at VDD = 3.3V,  $T_A$  = 25°C, V1 Low = 0V, V1 High = 3.3V,  $Z_L$  = 50 $\Omega$ , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 8 Isolation vs. Vdd (RFC - RFx)



<sup>\*</sup> Extrapolated data is the actual performance of part excluding the resonance of the evaluation board.

#### Figure 10 Isolation vs. Vdd (RFx - RFx)

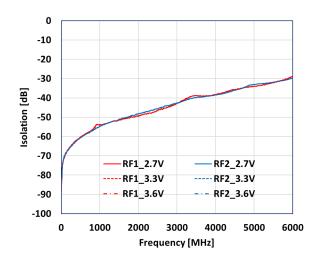



Figure 9 Isolation vs. Temp (RFC-RFx)

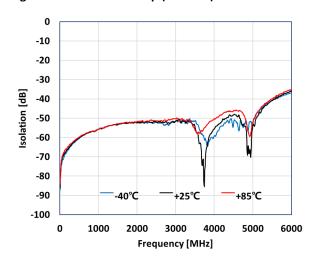
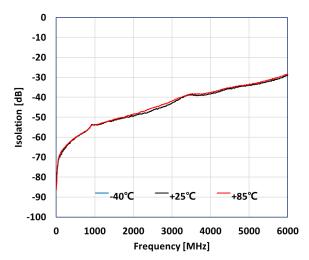




Figure 11 Isolation vs. Temp (RFx - RFx)



**BeRex** 

•website: www.berex.com



## Typical Performances - 75Ω

Typical conditions are at VDD = 3.3V,  $T_A$  = 25°C, V1 Low = 0V, V1 High = 3.3V,  $Z_L$  = 75 $\Omega$ , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 12 Insertion Loss (RFC - RFx)

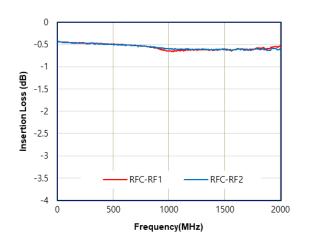



Figure 13 Insertion Loss vs. Temp (RFC - RFx)

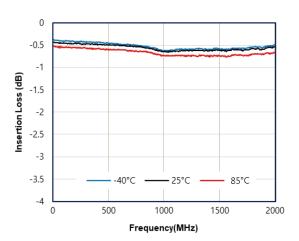



Figure 14 Return Loss (RFC,RFx)

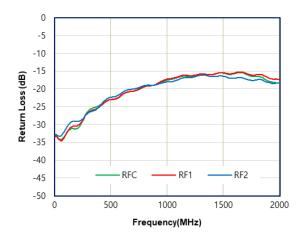
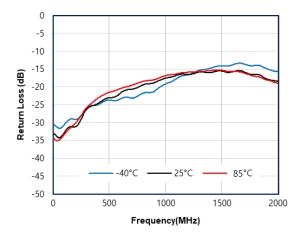




Figure 15 Return Loss vs. Temp (RFC)



**BeRex** 

•website: www.berex.com



## Typical Performances - 75Ω

Typical conditions are at VDD = 3.3V,  $T_A$  = 25°C, V1 Low = 0V, V1 High = 3.3V,  $Z_L$  = 75 $\Omega$ , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 16 Isolation (RFC - RFx)

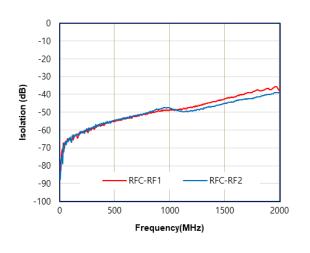



Figure 17 Isolation vs. Temp (RFC-RFx)

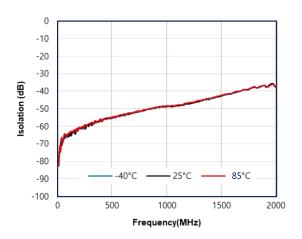



Figure 18 Isolation (RFx - RFx)

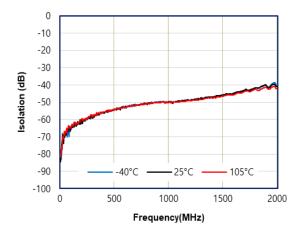
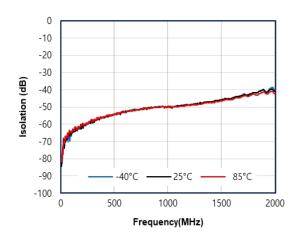




Figure 19 Isolation vs. Temp (RFx - RFx)





#### Evaluation Board - $50\Omega$

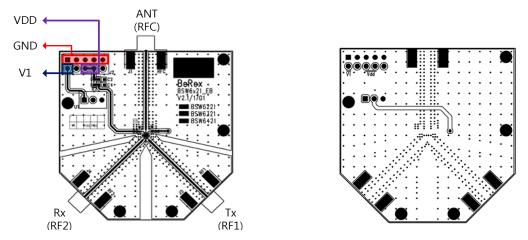



Figure 20 Evaluation Board Layout -  $50\Omega$ 

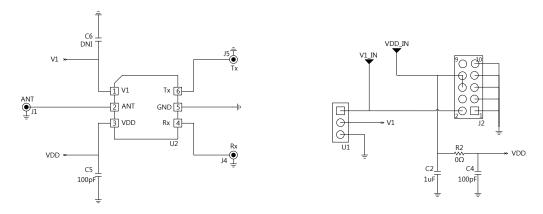



Figure 21 Evaluation Board Schematic -  $50\Omega$ 

#### Table 8 Bill of Material - Evaluation Board $50\Omega$

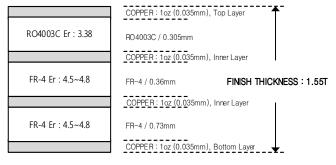



Figure 22 Evaluation Board PCB Layer Information  $50\Omega$ 

| No. | Ref Des     | Part Qty | Part Number          | Remark |
|-----|-------------|----------|----------------------|--------|
| 1   | C2          | 1        | CAP 1608 1uF J 50V   |        |
| 2   | C4          | 1        | CAP 1608 100pF J 50V |        |
| 3   | C5*         | 1        | CAP 1005 100pF J 50V |        |
| 4   | C6          | 1        | CAP 1005 DNI         |        |
| 5   | R2          | 1        | RES 1608 J 0ohm      |        |
| 6   | U1          | 1        | 3 Pin Header         |        |
| 7   | J2          | 1        | 10 Pin Header        |        |
| 8   | ANT, Tx, Rx | 3        | SMA_END_LAUNCH       |        |
| 9   | U2          | 1        | 1.5X1.5_6L_BSW6421   |        |

<sup>\*</sup> C5 should be placed near the device.

BeRex

•website: www.berex.com



#### Evaluation Board - 75Ω

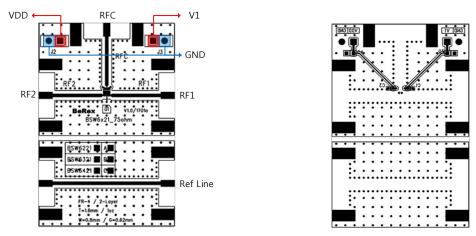



Figure 23 Evaluation Board Layout -  $75\Omega$ 

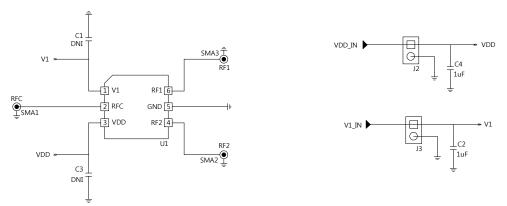



Figure 24 Evaluation Board Schematic -  $75\Omega$ 

# COPPER: 1oz (0.035mm), Top Layer FR-4 Er : 4.5~4.8 FR-4 / 0.58mm COPPER: 1oz (0.035mm), Inner Layer FR-4 Er : 4.5~4.8 FR-4 / 0.3mm FINISH THICKNESS :1.6T COPPER: 1oz (0.035mm), Inner Layer FR-4 Er : 4.5~4.8 FR-4 / 0.58mm

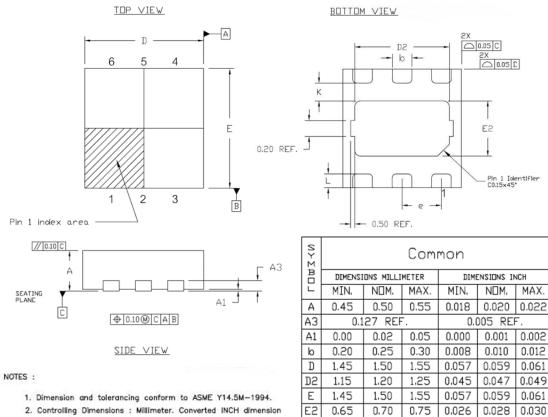
Table 9 Bill of Material - Evaluation Board 75 $\Omega$ 

| No. | Ref Des     | Part Qty | Part Number                | Remark |
|-----|-------------|----------|----------------------------|--------|
| 1   | C2,C4       | 2        | CAP 0603 1uF 50V           |        |
| 2   | C1,C3       | 2        | CAP 0402 DNI               |        |
| 3   | RFC,RF1,RF2 | 3        | F Type_END_LAUNCH          |        |
| 4   | J2,J3       | 2        | 2 Pin Header               |        |
| 5   | U2          | 1        | DFN 1.5X1.5_6L_<br>BSW6421 |        |

Figure 25 Evaluation Board PCB Layer Information  $75\Omega$ 

COPPER: 1oz (0.035mm), Bottom Layer

**BeRex** 


•website: www.berex.com

•email: sales@berex.com

11



## **Package Outline Drawing**



- are not necessarily exact.
- 3. Dimension b applied to Metallized terminal and is measured between 0.15 to 0.30mm from terminal tip.

Figure 26 Package Outline Drawing

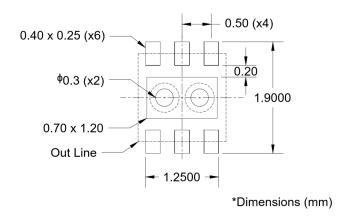
е

Κ

0.125

0.230

0.500 BSC

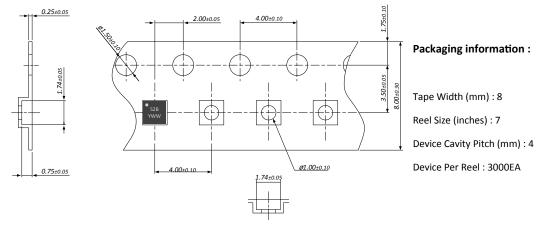

0.175 0.225

0.020 BSC

0.007 0.009

0.005

0.009




**Figure 27 Recommended Land Pattern** 

**BeRex** •website: www.berex.com •email: sales@berex.com 12



#### Tape & Reel



#### **Package Marking**

S<sub>2</sub>B YWW S: Switch

2: The number of switch throw

B: Sequential Number

Y: Year

WW: Work Week

Figure 28 Package Marking

#### Lead plating finish

#### 100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

#### MSL / ESD Rating

ESD Rating: Class 2

Value: Passes < 2500V

Test: Human Body Model (HBM) Standard: JEDEC Standard JESD22-A114B

MSL Rating: Level 1 at +265°C convection reflow

Standard: JEDEC Standard J-STD-020



Proper ESD procedures should be followed when handling this device.

#### **NATO CAGE code:**

| 2   N   9   6   F |
|-------------------|
|-------------------|

•website: www.berex.com

•email: sales@berex.com