

5 MHz-8 GHz

Product Description

The BSW6620 is an absorptive SPDT 50 Ω matched RF switch supporting bandwidth up to 8GHz. It's high linearity performance across the temperature range makes it ideally suitable for use in 3G/4G/5G wireless infrastructure and 802.11 a/n/ac/ax applications where high isolation and excellent performance is required.

The BSW6620 is designed with robust ESD protection circuits at all pins and packaged in an industry standard, fully RoHS2-compliant, 16Lead, 4mm x 4mm x 0.9mm QFN package.

The BSW6620 does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor.

A functional block diagram is shown in Figure 1.

Block Diagram

Applications

- Wireless 3G/4G/5G Infrastructure
- Base station & Repeater
- WLAN 802.11 a/b/ac/ax

Package Type

4mm x 4mm x 0.9mm, 16-Lead QFN Package Figure 2. Package type

Device Features

- Output frequency range : 5MHz to 8.0GHz
- Supply Voltage : 2.7V to 5.5V
- ESD, HBM : ±2.0kV @All pins
- Operating temperature range : -40°C to +105°C
- Low Insertion Loss
 - : 0.78dB @ 2GHz
 - : 0.74dB @ 4GHz
 - : 0.92dB @ 6GHz
- Ultra High Isolation
- RFC to RFx
- : 65dB @ 2GHz
- : 58dB @ 4GHz
- : 54dB @ 6GHz
- RFx to RFx
- : 56dB @ 2GHz
- : 50dB @ 4GHz
- : 46dB @ 6GHz
- Switching time : 120 to 240ns
- 16-Lead QFN package : 4.0mm x 4.0mm x 0.9mm
- Lead-free/RoHS2 compliant QFN package

Electrical Specifications

Typical conditions are at VDD = 5V, T_A = +25°C, VCTL/EN Low = 0V, VCTL/EN High = 3.3V, Z_L = 50 Ω , e

xcluding SMA Connector and PCB losses⁽¹⁾, unless otherwise noted.

Parameter	Path	Condition	Min	Тур	Max	Unit
Derating Frequency	i utii	condition	5	i yp	8000	MHz
perating riequency		1011	5	0.65	8000	101112
		1GHz		0.65		
		2GHz		0.78		
Insertion Loss	RFC - RFx	3GHz		0.89		dB
		4GHz		0.74		
		6GHz		0.92		
		8GHz		1.15		
		1GHz		73		
		2GHz		68		
Isolation	RFC - RFx	3GHz		61		dB
(C to X)	_	4GHz		58		-
		6GHz		54		
		8GHz		48		
		1GHz		63		
		2GHz		56		
Isolation	RFx - RFx	3GHz		53		dB
(X to X)		4GHz		50		üb
		6GHz		46		
		8GHz		42		
Return Loss	RFC / RF1 / RF2	5MHz—6GHz		21/20/20		dB
(Active Port)		6GHz—8GHz		21/19/19		ub
Return Loss		5MHz—6GHz		20 / 18/ 17		d٦
(Terminated Port)	RFC / RF1 / RF2	6GHz—8GHz		18 / 15/ 14		dB
		2.35GHz		36.5		
Input P1dB	RFC - RFx	3.5GHz		35.7		dBm
		4.9GHz		35.8		
		2.35GHz		112		
Input IP2 ⁽²⁾	RFC - RFx	3.5GHz		107		dBm
1	-	4.9GHz		102		
		2.35GHz		66		
Input IP3 ⁽²⁾	RFC - RFx	3.5GHz		68		dBm
input il o		4.9GHz		65		abiii
		2.35GHz		100		
2nd Harmonics ⁽³⁾	RFC - RFx	3.5GHz		95		dBc
	NEC - NEX	4.9GHz		92		UDC
3rd Harmonics ⁽³⁾				+		
		2.35GHz		101		dD -
	RFC - RFx	3.5GHz		105		dBc
		4.9GHz		96		
Switching time	RFC - RFx	50% CTRL to 90% RF		240		ns
Switching time		50% CTRL to 10% RF		120		113

The typical spurious performance of the BSW6620 is under –140dBm / 10Hz @ Over 10MHz

(1)Excluding SMA Connector and PCB loss.

1GHz (0.18dB), 2GHz (0.27dB), 3GHz (0.35dB), 4GHz (0.42dB), 5GHz (0.50dB), 6GHz (0.58dB), 7GHz (0.66dB), 8GHz (0.69dB) (2)The each-tone Power is 20dBm and Tone spacing is 1MHz.

(3)Tone Power is 20dBm.

BeRex

•website: www.berex.com

•email: sales@berex.com

2

Specifications and information are subject to change without notice. BeRex is a trademark of BeRex.

All other trademarks are the property of their respective owners. $\ \ \, \mathbb{C}$ 2023 BeRex

5 MHz–8 GHz

BSW6620

Product Description

Figure 3. Pin Description

	Pin No.	Pin Name	Description
	1	VDD	Supply Voltage.
2	2	VCTL	Switch Control Input.
-	2	VCIL	(Definition for the VCTL pin, See Table 3)
D	3	RFC	RFC Port.
	4, 6, 7, 8, 10,	GND	Ground.
ID	11, 13, 14, 15	UND	Ground:
	5	EN	Switch Control Input.
1	5	EIN	(Definition for the EN pin, See Table 3)
	9	RF1	RF1 Port.
	12 RF2		RF2 Port.
	16	N/C	Internal connection to Ground, External connection to PCB Ground Recommended
	Pad Exposed Pad		Ground.
	RFC-RF1	L	RFC-RF2
	ON		OFF

Table 3. Control Truth Table

VCTL	EN	RFC-RF1	RFC-RF2
1	0	ON	OFF
0	0	OFF	ON
0	1	OFF	OFF
1	1	OFF	OFF

Table 2. Pin Description

Table 4. Operating Ranges

Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage	VDD	2.7	5	5.5	V
Supply Current	IDD	-	210	-	μA
Digital Input Control (VCTL/EN)	VL_{High}	1.0	-	3.3	V
	VL _{Low}	0	-	0.7	V
Operating Temperature Range	Τo	-40	+25	+105	°C
RF Input Power, CW	P _{CWOP}	-	-	33	dBm

Table 5. Absolute Maximum Ratings

	Parameter		Symbol	Min	Max	Unit
	Supply Voltage		VDD	-0.3	5.5	V
Digital Input Voltage		VCTL / EN	-0.3	3.6	V	
Maxi	Maximum Input Power, CW (+25°C)		RF _{CWMAX}	-	Input P1dB	dBm
S	Storage Temperature Range		T _{ST}	-65	+150	°C
ESD	НВМ	ALL pins	V _{ESDHBM}		±2000	V
ESD	CDM	ALL pins	V _{ESDCDM}		±1000	V

BeRex

•website: www.berex.com

•email: sales@berex.com

5 MHz-8 GHz

Typical Performances

Typical conditions are at VDD = 5V, $T_A = 25^{\circ}$ C, VCTL/EN Low = 0V, VCTL/EN High = 3.3V, $Z_L = 50\Omega$, Excluding SMA Connector and PCB losses, unless otherwise noted.

Figure 4. Insertion Loss vs VDD [RFC to RF1]

Figure 6. Insertion Loss vs Temp [RFC to RF1]

Figure 8. RFC Port Return Loss vs Temp [RF1 On state]

Figure 5. Insertion Loss vs VDD [RFC to RF2]

Figure 7. Insertion Loss vs Temp [RFC to RF2]

Figure 9. RFC Port Return Loss vs Temp [RF2 On state]

BeRex

•website: <u>www.berex.com</u>

•email: sales@berex.com

4

Typical Performances

Typical conditions are at VDD = 5V, $T_A = 25$ °C, VCTL/EN Low = 0V, VCTL/EN High = 3.3V, $Z_L = 50\Omega$, Excluding SMA Connector and PCB losses, unless otherwise noted.

Figure 12. RF1 Port Return Loss vs Temp [Off state]

Figure 14. Isolation vs VDD [RFC to RFx]

Figure 15. Isolation vs Temp [RFC to RFx]

•email: sales@berex.com

Figure 11. RF2 Port Return Loss vs Temp [On state]

Figure 13. RF2 Port Return Loss vs Temp [Off state]

BeRex

All other trademarks are the property of their respective owners. © 2023 BeRex

•website: www.berex.com

5

5 MHz–8 GHz

BSW6620

Typical Performances

Typical conditions are at VDD = 5V, $T_A = 25^{\circ}$ C, VCTL/EN Low = 0V, VCTL/EN High = 3.3V, $Z_L = 50\Omega$, Excluding SMA Connector and PCB losses, unless otherwise noted.

Figure 16. Isolation vs VDD [RFx to RFx]

Figure 18. Input IP2 vs VDD [RFC to RFx]

Figure 20. Input IP3 vs VDD [RFC to RFx]

Figure 17. Isolation vs Temp [RFx to RFx]

Figure 19. Input IP2 vs Temp [RFC to RFx]

BeRex

•website: <u>www.berex.com</u>

•email: sales@berex.com

6

5 MHz-8 GHz

Typical Performances

Typical conditions are at VDD = 5V, $T_A = 25$ °C, VCTL/EN Low = 0V, VCTL/EN High = 3.3V, $Z_L = 50\Omega$, Excluding SMA Connector and PCB losses, unless otherwise noted.

Figure 22. 2nd Harmonic vs VDD [RFC to RFx]

Figure 24. 3rd Harmonic vs VDD [RFC to RFx]

Figure 26. Input P1dB vs VDD [RFC to RFx]

Figure 23. 2nd Harmonic vs Temp [RFC to RFx]

Figure 25. 3rd Harmonic vs Temp [RFC to RFx]

BeRex

•website: www.berex.com

•email: sales@berex.com

7

5 MHz–8 GHz

BSW6620

Evaluation Board

[Bottom View]

Figure 28. Evaluation Board Layout

Figure 29. Evaluation Board Schematic

Table 6. Bill of Material - Evaluation Board

No.	Ref Des	Part Qty	Part Number	Remark
1	C1	1	CAP 1005 100pF J 50V	
2	C5	2	CAP 1005 1uF J 50V	C5 should be placed near the BSW6620
3	C2,C3,C4,C6,C7,C8,C9	6	CAP 1005 DNI	
4	R1,R2,R3	3	RES 1005 0 ohm	
5	J1,J2,J3	3	2 Pin Header 2.54mm	
6	\$1,\$2,\$3,\$4,\$5	5	SMA_END_LAUNCH	
7	U1	1	BSW6620	

•website: www.berex.com

•email: sales@berex.com

BSW6620

5 MHz-8 GHz

Evaluation Board

Figure 30. Suggested PCB Land Pattern

Figure 31. Evaluation Board PCB Layer Information

5 MHz-8 GHz

Package Outline Drawing

Figure 32. Package Outline Dimension

Ν

ND

NE

NOTES

•website: www.berex.com

```
•email: sales@berex.com
```

16

4

4

1,2

3

5

5

5 MHz–8 GHz

BSW6620

Tape & Reel

NOTES: 110 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0.2 2 CAMBER IN COMPLANCE WITH EIA 491 3 POCKET FOSTITION REJATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE

Packaging information:		
Tape Width	12mm	
Reel Size	7inch	
Device Cavity Pitch	8mm	
Device Per Reel	1000EA	

Figure 33. Tape & Reel Information

•website: www.berex.com

•email: sales@berex.com

5 MHz-8 GHz

Package Marking

Marking information:			
BSW6620	Device Name		
YY	Year		
ww	Work Week		
xx	Wafer Lot Number		

Figure 34. Package Marking

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD information1 :		
Rating	Class 2 (±2000V)	
Test Human Body Model (HBM)		
Standard JEDEC Standard JS-001-2017		

MSL information:		
Rating	Level 1 at +260°C convection reflow	
Standard	JEDEC Standard J-STD-020	

ESD information2 :		
Rating	Class C3 (±1000V)	
Test	Charged Device Model (CDM)	
Standard	JEDEC Standard JS-002-2018	

Proper ESD procedures should be followed when handling the device.

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1% (w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

BeRex

•website: www.berex.com

•email: sales@berex.com