5 MHz-9000 MHz

Product Description

The BSW6620 is an absorptive SPDT 50Ω matched RF switch supporting bandwidth up to 9GHz. It's high linearity performance across the temperature range makes it ideally suitable for use in 3G/4G/5G/6G wireless infrastructure and 802.11 a/n/ac/ax applications where high isolation and excellent performance is required.

The BSW6620 is designed with robust ESD protection circuits at all pins and packaged in an industry standard, fully RoHS2-compliant, 16Lead, 4mm x 4mm x 0.9mm QFN package.

The BSW6620 does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor.

A functional block diagram is shown in Figure 1.

Block Diagram

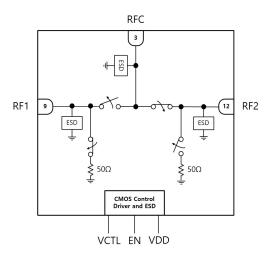


Figure 1. Functional Block Diagram

Applications

- Wireless 3G/4G/5G/6G Infrastructure
- Base station & Repeater
- WLAN 802.11 a/b/ac/ax

Package Type

4mm x 4mm x 0.9mm, 16-Lead QFN Package

Figure 2. Package type

Device Features

• Supply Voltage: 2.7V to 5.5V

• Low Insertion Loss

: 0.72dB @ 2GHz

: 0.83dB @ 4GHz

: 0.74dB @ 6GHz

: 1.02dB @ 7.2GHz

Ultra High Isolation

- RFC to RFx

: 65dB @ 2GHz

: 58dB @ 4GHz

: 54dB @ 6GHz

: 49dB @ 7.2GHz

- RFx to RFx

: 56dB @ 2GHz

: 50dB @ 4GHz

: 46dB @ 6GHz

: 42dB @ 7.2GHz

• Switching time: 120 to 240ns

• ESD, HBM: ±2.0kV @All pins

• Operating temperature range : -40°C to +105°C

5 MHz-9000 MHz

Electrical Specifications

Typical conditions are at VDD = 5V, T_A = +25°C, VCTL/EN Low = 0V, VCTL/EN High = 3.3V, Z_L = 50 Ω , excluding SMA Connector and PCB losses⁽¹⁾, unless otherwise noted.

Table 1. Electrical Specifications

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating Frequency			5		9000	MHz
Insertion Loss	RFC - RFx	1GHz 2GHz 3GHz 4GHz 5GHz 6GHz 7GHz 8GHz 9GHz		0.61 0.72 0.96 0.83 0.79 0.74 0.88 1.04 1.80		dB
Isolation (C to X)	RFC - RFx	1GHz 2GHz 3GHz 4GHz 5GHz 6GHz 7GHz 8GHz 9GHz		75 70 61 56 54 53 50 45		dB
Isolation (X to X)	RFx - RFx	1GHz 2GHz 3GHz 4GHz 5GHz 6GHz 7GHz 8GHz 9GHz		61 55 52 49 46 44 42 40 39		dB
Return Loss (Active Port)	RFC / RF1 / RF2	5MHz—2GHz 2GHz—5GHz 5GHz—8GHz 8GHz—9GHz		23/21/21 15/15/15 20/20/15 10/10/10		dB
Return Loss (Terminated Port)	RFC / RF1 / RF2	5MHz—2GHz 2GHz—5GHz 5GHz—8GHz 8GHz—9GHz		25/17/17 15/15/15 20/15/15 10/12/12		dB
Switching time	RFC - RFx	50% CTRL to 90% RF 50% CTRL to 10% RF		240 120		ns
Settling time	RFC - RFx	50% CTRL to 0.05dB final value Rising Edge 50% CTRL to 0.05dB final value Falling Edge		320 150		ns

(1)Excluding SMA Connector and PCB loss.

1GHz (0.24dB), 2GHz (0.34dB), 3GHz (0.37dB), 4GHz (0.49dB), 5GHz (0.49dB), 6GHz (0.68dB), 7GHz (0.78dB), 8GHz (0.73dB), 9GHz (0.82dB)

5 MHz-9000 MHz

Electrical Specifications

Typical conditions are at VDD = 5V, T_A = +25°C, VCTL/EN Low = 0V, VCTL/EN High = 3.3V, Z_L = 50 Ω , excluding SMA Connector and PCB losses⁽¹⁾, unless otherwise noted.

Table 1. Electrical Specifications (Cont.)

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating Frequency			5		9000	MHz
Input P1dB	RFC - RFx	2.35GHz 3.5GHz 4.9GHz		36.5 35.7 35.8		dBm
Input IP2 ⁽²⁾	RFC - RFx	2.35GHz 3.5GHz 4.9GHz		112 107 102		dBm
Input IP3 ⁽²⁾	RFC - RFx	2.35GHz 3.5GHz 4.9GHz		66 68 65		dBm
2nd Harmonics ⁽³⁾	RFC - RFx	2.35GHz 3.5GHz 4.9GHz		100 95 92		dBc
3rd Harmonics ⁽³⁾	RFC - RFx	2.35GHz 3.5GHz 4.9GHz		101 105 96		dBc
Maximum Spurious Level	RFC - RFx	5MHz—9GHz ⁽⁴⁾		<-145		dBm/10Hz

⁽²⁾ The each-tone Power is 20dBm and Tone spacing is 1MHz.

⁽³⁾Tone Power is 20dBm.

⁽⁴⁾No spurious signals were detected in all Frequency range.

5 MHz-9000 MHz

Product Description

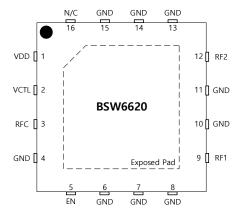


Figure 3. Pin Description (Top View)

Table 2. Pin Descriptions

Pin No.	Pin Name	Description
1	VDD	Supply Voltage.
2	VCTL	Switch Control Input. (Referring to Table 3)
3	RFC	RFC Port.
4, 6, 7, 8, 10, 11, 13, 14, 15	GND	Ground.
5	EN	Switch Control Input.
3	EIN	(Definition for the EN pin, See Table 3)
9	RF1	RF1 Port.
12	RF2	RF2 Port.
		Internal connection to Ground, External
16	N/C	connection to PCB Ground Recommended
		to maximize isolation.
Pad	Exposed Pad	Ground.

Table 3. Control Truth Table

VCTL	EN	RFC-RF1	RFC-RF2
1	0	ON	OFF
0	0	OFF	ON
0	1	OFF	OFF
1	1	OFF	OFF

Table 4. Operating Ranges

Parameter	Symbol	Min	Typical	Max	Unit
Supply Voltage	VDD	2.7		5.5	V
Supply Current	IDD	-	210	-	μА
Digital Input Control (VCTI /FNI)	VL_{High}	1.0	-	3.3	V
Digital Input Control (VCTL/EN)	VL_{Low}	0	-	0.7	V
Operating Temperature Range	To	-40	+25	+105	°C
RF Input Power, CW	P _{CWOP}	-	-	33	dBm

5 MHz-9000 MHz

Table 5. Absolute Maximum Ratings

Parameter			Symbol	Min	Max	Unit
	Supply Vo	oltage	VDD	-0.3	5.5	V
Digital Input Voltage		VCTL / EN	-0.3	3.6	V	
Maximum Input Power, CW (+25°C)		RF _{CWMAX}	-	Input P1dB	dBm	
Storage Temperature Range		T _{ST}	-65	+150	°C	
ESD	НВМ	ALL pins	V _{ESDHBM}		±2000	V
ESD	CDM	ALL pins	V _{ESDCDM}		±1000	V

Table 6. Package Thermal Characteristics

Parameter	Symbol	Value	Unit
Junction to Ambient Thermal Resistance	θ_{JA}	43.2	°C/W

5 MHz-9000 MHz

Ultra High Isolation SPDT RF Switch

Typical Performances

Typical conditions are at VDD = 5V, T_A = 25°C, VCTL/EN Low = 0V, VCTL/EN High = 3.3V, Z_L = 50Ω, Excluding SMA Connector and PCB losses, unless otherwise noted.

Figure 4. Insertion Loss vs VDD [RFC to RF1]

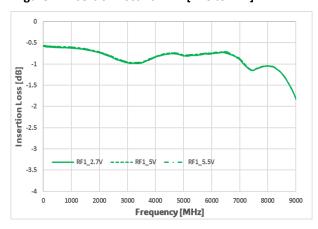


Figure 5. Insertion Loss vs VDD [RFC to RF2]

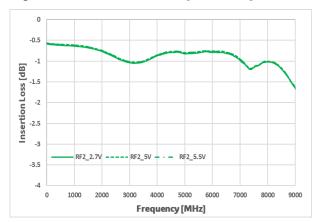


Figure 6. Insertion Loss vs Temp [RFC to RF1]

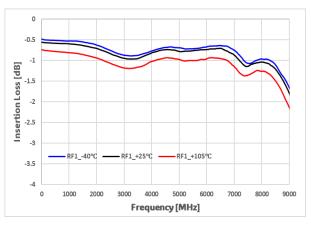


Figure 7. Insertion Loss vs Temp [RFC to RF2]

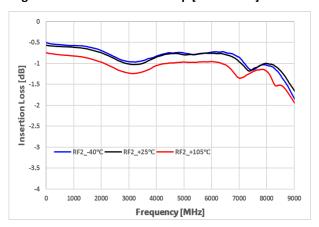


Figure 8. RFC Port Return Loss vs Temp [RF1 On state]

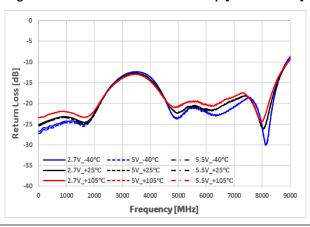
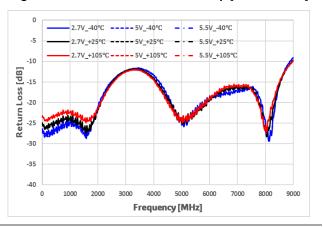



Figure 9. RFC Port Return Loss vs Temp [RF2 On state]

BeRex

•website: www.berex.com

•email: sales@berex.com

Typical Performances

Typical conditions are at VDD = 5V, T_A = 25°C, VCTL/EN Low = 0V, VCTL/EN High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB losses, unless otherwise noted.

Figure 10. RF1 Port Return Loss vs Temp [On state]

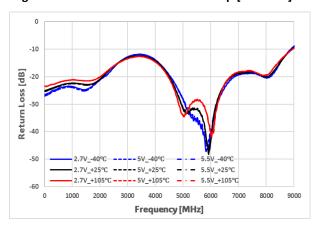


Figure 12. RF1 Port Return Loss vs Temp [Off state]

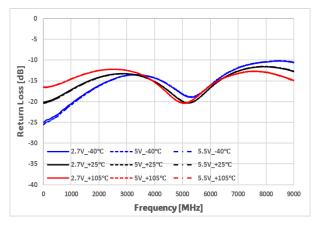


Figure 14. Isolation vs VDD [RFC to RFx]

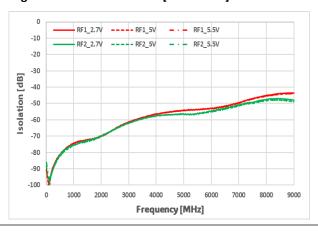


Figure 11. RF2 Port Return Loss vs Temp [On state]

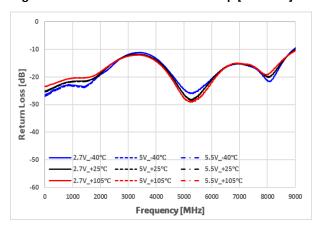


Figure 13. RF2 Port Return Loss vs Temp [Off state]

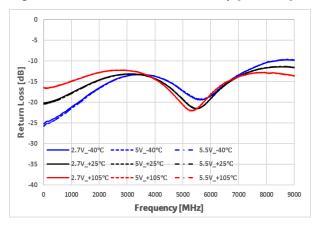
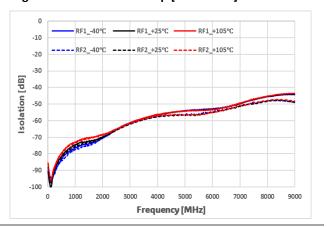



Figure 15. Isolation vs Temp [RFC to RFx]

BeRex •website: www.berex.com •email:

•email: sales@berex.com

Typical Performances

Typical conditions are at VDD = 5V, T_A = 25°C, VCTL/EN Low = 0V, VCTL/EN High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB losses, unless otherwise noted.

Figure 16. Isolation vs VDD [RFx to RFx]

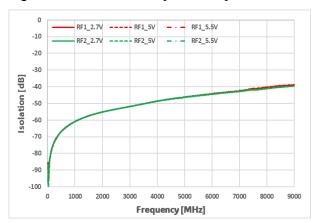


Figure 17. Isolation vs Temp [RFx to RFx]

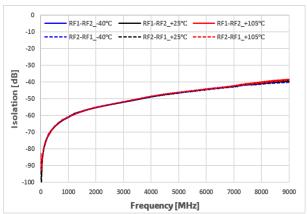


Figure 18. Input IP2 vs VDD [RFC to RFx]

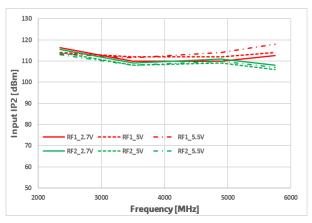


Figure 19. Input IP2 vs Temp [RFC to RFx]

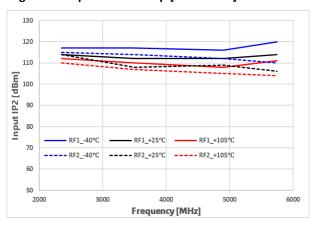


Figure 20. Input IP3 vs VDD [RFC to RFx]

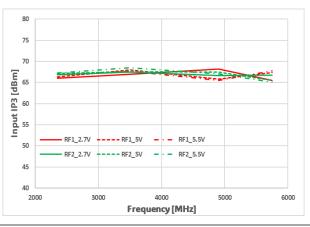
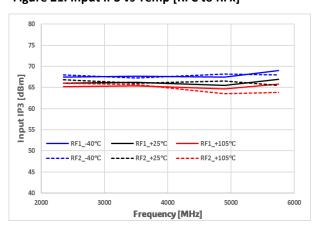
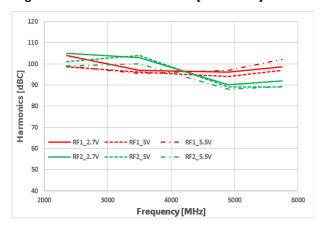



Figure 21. Input IP3 vs Temp [RFC to RFx]

BeRex

•website: www.berex.com


•email: sales@berex.com

Typical Performances

Typical conditions are at VDD = 5V, T_A = 25°C, VCTL/EN Low = 0V, VCTL/EN High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB losses, unless otherwise noted.

Figure 22. 2nd Harmonic vs VDD [RFC to RFx]

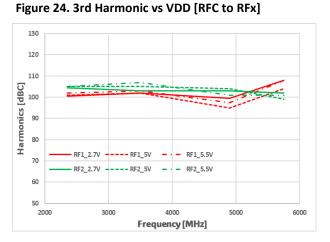


Figure 26. Input P1dB vs VDD [RFC to RFx]

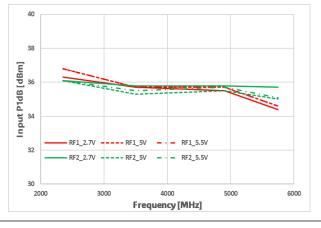


Figure 23. 2nd Harmonic vs Temp [RFC to RFx]

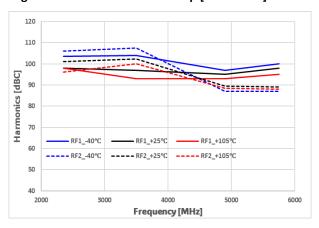


Figure 25. 3rd Harmonic vs Temp [RFC to RFx]

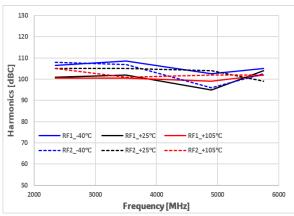


Figure 27. Input P1dB vs Temp [RFC to RFx]

•email: sales@berex.com

•website: www.berex.com

BeRex

9

Evaluation Board

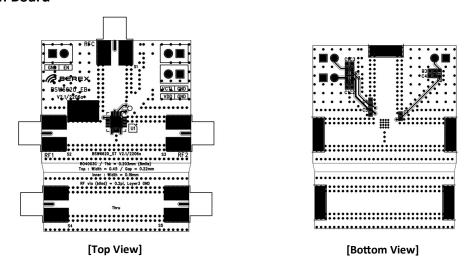


Figure 28. Evaluation Board Layout

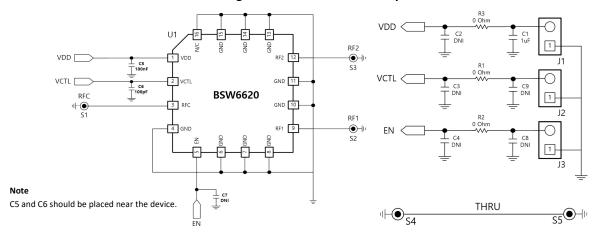


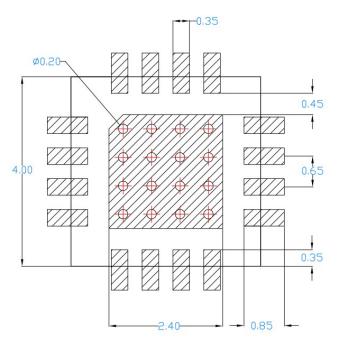
Figure 29. Evaluation Board Schematic

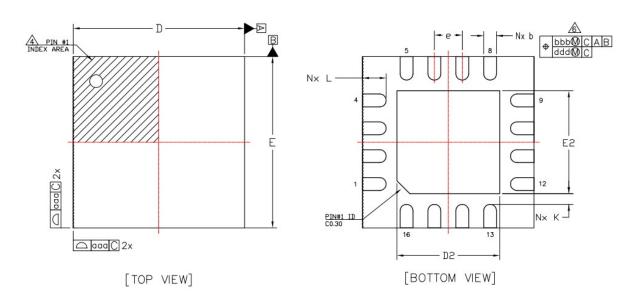
Table 7. Bill of Material - Evaluation Board

No.	Ref Des	Part Qty	Part Number	Remark
1	C1	1	CAP 1005 1uF J 50V	
2	C5	1	CAP 1005 100nF J 50V	
3	C6	1	CAP 1005 100pF J 50V	
4	C2,C3,C4,C7,C8,C9	6	CAP 1005 DNI	
5	R1,R2,R3	3	RES 1005 0 ohm	
6	J1,J2,J3	3	2 Pin Header 2.54mm	
7	\$1,\$2,\$3,\$4,\$5	5	SMA_END_LAUNCH	
8	U1	1	BSW6620	

BeRex ●website: <u>www.berex.com</u> ●email: <u>sales@berex.com</u> 10

Evaluation Board




Figure 30. Suggested PCB Land Pattern

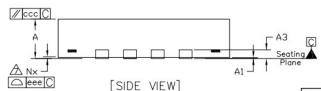


Figure 31. Evaluation Board PCB Layer Information

5 MHz-9000 MHz

Package Outline Drawing

NOTES:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-2009.
- 2. All dimensions are in millimeters.
- 3. N is the total number of terminals.
- The location of the marked terminal #1 identifier is within the hatched area.
- 5. ND and NE refer to the number of terminals each D and E side respectively.
- bimension b applies to the metallized terminal and is measured between 0.15mm and 0.3mm from the terminal tip. If the terminal has a radius on the other end of it, dimension b should not be measured in that radius area.
- A Coplanarity applies to the terminals and all other bottom surface metallization.

	Dime	ension Tab	le	
Symbel Thickness	Min	Nominal	Max	Note
A	0.80	0.90	1.00	
A1	0.00	0.02	0.05	-
A3		0.203 Ref.		
b	0.25	0.30	0.35	6
D		4.00 BSC		
E		4.00 BSC		2
е		0.65 BSC		
D2	2.35	2.40	2.45	
E2	2.35	2.40	2.45	
К	0.20			2
L	0.45	0.55	0.65	
aaa		2		
bbb		0.10		
ccc		0.10		
ddd		0.05		·
eee	0.08			
N	16			3
ND	4			5
NE	4			5
NOTES	1,2			

Figure 32. Package Outline Dimension

5 MHz-9000 MHz

Tape & Reel

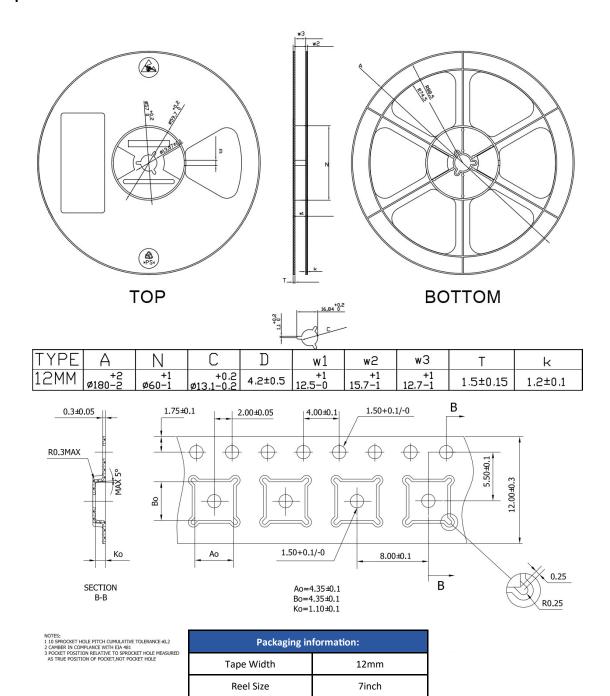


Figure 33. Tape & Reel Information

8mm

1000EA

Device Cavity Pitch

Device Per Reel

BeRex ●website: <u>www.berex.com</u> ●email: <u>sales@berex.com</u> 13

5 MHz-9000 MHz

Package Marking

Marking information:			
BSW6620	Device Name		
YY	Year		
ww	Work Week		
XX	Wafer Lot Number		

Figure 34. Package Marking

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD information1:		
Rating	Class 2 (±2000V)	
Test	Human Body Model (HBM)	
Standard	JEDEC Standard JS-001-2017	

MSL information:			
Rating	Level 1 at +260°C convection reflow		
Standard	JEDEC Standard J-STD-020		

ESD information2 :			
Rating	Class C3 (±1000V)		
Test	Charged Device Model (CDM)		
Standard	JEDEC Standard JS-002-2018		

Proper ESD procedures should be followed when handling the device.

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

2 N	9	6	F
-----	---	---	---

BeRex •website: www.berex.com •email: sales@berex.com