5 MHz-9000 MHz #### **Product Description** The BSW6622 is an absorptive SPDT 50Ω matched RF switch supporting bandwidth up to 9GHz. It's high linearity performance across the temperature range makes it ideally suitable for use in 3G/4G/5G/6G wireless infrastructure and 802.11 a/n/ac/ax applications where high isolation and excellent performance is required. The BSW6622 is designed with robust ESD protection circuits at all pins and packaged in an industry standard, fully RoHS2-compliant, 20Lead, 4mm x 4mm x 0.9mm QFN package. The BSW6622 does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor. A functional block diagram is shown in Figure 1. ### **Block Diagram** Figure 1. Functional Block Diagram ### **Applications** - Wireless 3G/4G/5G/6G Infrastructure - Base station & Repeater - WLAN 802.11 a/b/ac/ax ### **Package Type** 4mm x 4mm x 0.9mm, 20-Lead QFN Package Figure 2. Package type #### **Device Features** • Output frequency range: 5MHz to 9.0GHz • Supply Voltage: 2.7V to 5.5V • Low Insertion Loss : 0.73dB @ 2GHz : 0.87dB @ 4GHz : 1.10dB @ 6GHz : 1.26 dB @ 7.2GHz • Ultra High Isolation - RFC to RFx : 62dB @ 2GHz : 57dB @ 4GHz : 48dB @ 6GHz : 46 dB @ 7.2GHz - RFx to RFx : 72dB @ 2GHz : 58dB @ 4GHz : 48dB @ 6GHz : 45 dB @ 7.2GHz • Switching time : 120 to 220ns • ESD, HBM: ±1.5kV @All pins \bullet Operating temperature range : -40°C to +105°C • 20-Lead QFN package: 4.0mm x 4.0mm x 0.9mm • Lead-free/RoHS2 compliant QFN package BeRex •website: www.berex.com •email: sales@berex.com ## 5 MHz-9000 MHz ### **Electrical Specifications** Typical conditions are at VDD = 5V, T_A = +25°C, C1/C2 Low = 0V, C1/C2 High = 3.3V, Z_L = 50 Ω , excluding SMA Connector and PCB losses⁽¹⁾, unless otherwise noted. **Table 1. Electrical Specifications** | Parameter | Path | Condition | Min | Тур | Max | Unit | |----------------------------------|-----------------|---|-----|--|------|------| | Operating Frequency | | | 5 | | 9000 | MHz | | Insertion Loss | RFC - RFx | 1GHz
2GHz
3GHz
4GHz
5GHz
6GHz
7GHz
8GHz
9GHz | | 0.61
0.68
0.69
0.75
0.90
1.16
1.26
1.27 | | dB | | Isolation
(C to X) | RFC - RFx | 1GHz
2GHz
3GHz
4GHz
5GHz
6GHz
7GHz
8GHz
9GHz | | 68
63
61
58
53
49
46
47
48 | | dB | | Isolation
(X to X) | RFx - RFx | 1GHz
2GHz
3GHz
4GHz
5GHz
6GHz
7GHz
8GHz
9GHz | | 89
78
67
59
53
50
46
43
39 | | dB | | Return Loss
(Active Port) | RFC / RF1 / RF2 | 5MHz — 4GHz
4GHz — 8GHz
8GHz — 9GHz | | 20 / 25 / 25
10 / 15 / 15
15 / 20 / 15 | | dB | | Return Loss
(Terminated Port) | RFC / RF1 / RF2 | 5MHz — 4GHz
4GHz — 8GHz
8GHz — 9GHz | | 20 / 22 / 22
10 / 20 / 20
15 / 23 / 22 | | dB | | Switching time | RFC - RFx | 50% CTRL to 90% RF
50% CTRL to 10% RF | | 220
120 | | ns | | Settling time | RFC - RFx | 50% CTRL to 0.05dB final value Rising Edge
50% CTRL to 0.05dB final value Falling Edge | | 250
130 | | ns | ⁽¹⁾ Excluding SMA Connector and PCB loss. 1GHz (0.15dB), 2GHz (0.24dB), 3GHz (0.33dB), 4GHz (0.35dB), 5GHz (0.37dB), 6GHz (0.49dB), 7GHz (0.55dB), 8GHz (0.56dB), 9GHz (0.66dB) ## 5 MHz-9000 MHz ### **Electrical Specifications** Typical conditions are at VDD = 5V, T_A = +25°C, C1/C2 Low = 0V, C1/C2 High = 3.3V, Z_L = 50 Ω , excluding SMA Connector and PCB losses⁽¹⁾, unless otherwise noted. **Table 1. Electrical Specifications (Cont.)** | Parameter | Path | Condition | Min | Тур | Max | Unit | |------------------------------|-----------|-----------------------------|-----|-------------------|------|----------| | Operating Frequency | | | 5 | | 9000 | MHz | | Input P1dB | RFC - RFx | 2.35GHz
3.5GHz
4.9GHz | | 36
36
34 | | dBm | | Input IP2 ⁽²⁾ | RFC - RFx | 2.35GHz
3.5GHz
4.9GHz | | 108
105
100 | | dBm | | Input IP3 ⁽²⁾ | RFC - RFx | 2.35GHz
3.5GHz
4.9GHz | | 64
64
65 | | dBm | | 2nd Harmonics ⁽³⁾ | RFC - RFx | 2.35GHz
3.5GHz
4.9GHz | | 95
90
80 | | dBc | | 3rd Harmonics ⁽³⁾ | RFC - RFx | 2.35GHz
3.5GHz
4.9GHz | | 100
101
95 | | dBc | | Maximum
Spurious Level | RFC - RFx | 5MHz — 9GHz ⁽⁴⁾ | | <-145 | | dBm/10Hz | ⁽²⁾ The each-tone Power is 20dBm and Tone spacing is 1MHz. ⁽³⁾ Tone Power is 20dBm. ⁽⁴⁾ No spurious signals were detected in all Frequency range. ## 5 MHz-9000 MHz ### **Product Description** Figure 3. Pin Description [Top View] #### **Table 2. Pin Descriptions** | Pin No. | Pin Name | Description | |--|-------------|---| | 1, 2, 4, 5, 6, 7, 9, 10,
11, 12, 14, 15, 18, 19 | GND | Ground | | 3 | RF1 | RF1 Port | | 8 | RFC | RFC Port | | 13 | RF2 | RF2 Port | | 16 | C2 | Switch Control Input (Definition for the C2 pin, See Table 3) | | 17 | C1 | Switch Control Input (Definition for the C1 pin, See Table 3) | | 20 | VDD | Supply Voltage | | Pad | Exposed Pad | Ground | **Table 3. Control Truth Table** | C1 | C2 | RFC-RF1 | RFC-RF2 | |----|----|---------|---------| | 0 | 0 | OFF | OFF | | 0 | 1 | OFF | ON | | 1 | 0 | ON | OFF | | 1 | 1 | N/A | N/A | **Table 4. Operating Ranges** | Parameter | Symbol | Min | Typical | Max | Unit | |--------------------------------------|-------------------|-----|---------|------|------| | Supply Voltage | VDD | 2.7 | 5 | 5.5 | V | | Supply Current | IDD | - | 210 | ı | μΑ | | District Industry Countries (CA (CA) | C_{High} | 1.0 | - | 3.3 | ٧ | | Digital Input Control (C1/C2) | C_{Low} | 0 | - | 0.7 | ٧ | | Operating Temperature Range | T _o | -40 | +25 | +105 | °C | | RF Input Power, CW | P _{CWOP} | - | - | 30 | dBm | ## 5 MHz-9000 MHz **Table 5. Absolute Maximum Ratings** | Parameter | | | Symbol | Min | Max | Unit | |---------------------------------|-----|-----------------|---------------------|------|------------|------| | Supply Voltage | | | VDD | -0.3 | 5.5 | V | | Digital Input Voltage | | | C1 / C2 | -0.3 | 3.6 | V | | Maximum Input Power, CW (+25°C) | | | RF _{CWMAX} | - | Input P1dB | dBm | | Storage Temperature Range | | T _{ST} | -65 | +150 | °C | | | LCD | НВМ | All pins | V _{ESDHBM} | - | 1500 | V | | ESD | CDM | All pins | V _{ESDCDM} | - | 1000 | V | ### **Table 6. Package Thermal Characteristics** | Parameter | Symbol | Value | Unit | |--|---------------|-------|------| | Junction to Ambient Thermal Resistance | θ_{JA} | 43 | °C/W | ## 5 MHz-9000 MHz ### **Typical Performances** Typical conditions are at VDD = 5V, T_A = 25°C, C1/C2 Low = 0V, C1/C2 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB losses, unless otherwise noted. Figure 4. Insertion Loss vs VDD [RFC to RF1] Figure 5 Insertion Loss vs VDD [RFC to RF2] Figure 6. Insertion Loss vs Temp [RFC to RF1] Figure 7. Insertion Loss vs Temp [RFC to RF2] Figure 8. RFC Port Return Loss vs Temp [RF1 On state] Figure 9. RFC Port Return Loss vs Temp [RF2 On state] BeRex •website: www.berex.com ## 5 MHz-9000 MHz ### **Typical Performances** Typical conditions are at VDD = 5V, T_A = 25°C, C1/C2 Low = 0V, C1/C2 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB losses, unless otherwise noted. Figure 10. RF1 Port Return Loss vs Temp [On state] Figure 11. RF2 Port Return Loss vs Temp [On state] Figure 12. RF1 Port Return Loss vs Temp [Off state] Figure 13. RF2 Port Return Loss vs Temp [Off state] Figure 14. Isolation vs VDD [RFC to RFx] Figure 15. Isolation vs Temp [RFC to RFx] BeRex •website: www.berex.com ## 5 MHz-9000 MHz ### **Typical Performances** Typical conditions are at VDD = 5V, T_A = 25°C, C1/C2 Low = 0V, C1/C2 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB losses, unless otherwise noted Figure 16. Isolation vs VDD [RFx to RFx] Figure 17. Isolation vs Temp [RFx to RFx] Figure 18. Input IP2 vs VDD [RFC to RFx] Figure 19. Input IP2 vs Temp [RFC to RFx] Figure 20 Input IP3 vs VDD [RFC to RFx] Figure 21 Input IP3 vs Temp [RFC to RFx] **BeRex** •website: www.berex.com ## 5 MHz-9000 MHz ### **Typical Performances** Typical conditions are at VDD = 5V, T_A = 25°C, C1/C2 Low = 0V, C1/C2 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB losses, unless otherwise noted. Figure 22. 2nd Harmonic vs VDD [RFC to RFx] Figure 23. 2nd Harmonic vs Temp [RFC to RFx] Figure 24. 3rd Harmonic vs VDD [RFC to RFx] Figure 25. 3rd Harmonic vs Temp [RFC to RFx] Figure 26. Input P1dB vs VDD [RFC to RFx] Figure 27. Input P1dB vs Temp [RFC to RFx] BeRex •website: www.berex.com ## 5 MHz-9000 MHz #### **Evaluation Board** Figure 28. Evaluation Board Layout Figure 29. Evaluation Board Schematic Table 7. Bill of Material - Evaluation Board | No. | Ref Des | Part Qty | Part Number | Remark | |-----|---------------------|----------|----------------------|--------| | 1 | C1 | 1 | 100nF CAP 1005 J 50V | | | 2 | C2 | 1 | 1uF CAP 1005 J 50V | | | 2 | C4, C7 | 2 | 100pF CAP 1005 J 50V | | | 3 | C3,C5,C6,C8,C9 | 5 | CAP 1005 DNI | | | 4 | R1,R2,R3 | 3 | 0 ohm RES 1005 | | | 5 | J4 | 1 | 6 Pin Header 2.54mm | | | 5 | \$1,\$2,\$3,\$4,\$5 | 5 | SMA_END_LAUNCH | Female | | 7 | U1 | 1 | BSW6622 | | BeRex ●website: <u>www.berex.com</u> ●email: <u>sales@berex.com</u> 10 5 MHz-9000 MHz #### **Evaluation Board** Figure 30. Suggested PCB Land Pattern Figure 31. Evaluation Board PCB Layer Information ## 5 MHz-9000 MHz ## **Package Outline Drawing** #### NOTES: - 1. Dimensioning and tolerancing conform to ASME Y14.5-2009. - 2. All dimensions are in millimeters. - 3. N is the total number of terminals. - The location of the marked terminal #1 identifier is within the hatched area. - ND and NE refer to the number of terminals each D and E side respectively. - Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.3mm from the terminal tip. If the terminal has a radius on the other end of it, dimension b should not be measured in that radius area. - Coplanarity applies to the terminals and all other bottom surface metallization. | | Dime | ension Table | 2 | | |------------------|-------|--------------|---------|------| | Symbel Thickness | Min | Nominal | Max | Note | | A | 0.80 | 0.90 | 1.00 | | | A1 | 0.00 | 0.02 | 0.05 | | | A3 | | 0.203 Ref. | | | | b | 0.21 | 0.26 | 0.31 | 6 | | D | | 4.00 BSC | | | | Ε | | 4.00 BSC | | | | e | 57.55 | 0.50 BSC | 2020-02 | | | DS | 1.95 | 2.00 | 2.05 | | | E5 | 1.95 | 2.00 | 2.05 | | | К | 0.20 | | | | | L1 | 0.35 | 0.40 | 0.45 | | | L | 0.40 | 0.50 | 0.60 | | | aaa | | | | | | lololo | | 0.10 | | | | ccc | | 0.10 | | | | ddd | | | | | | eee | 0.08 | | | | | N | 20 | | | 3 | | ND | | 5 | | 5 | | NE | 5 | | | 5 | | NOTES | | 1,2 | | | Figure 32. Package Outline Dimension ## 5 MHz-9000 MHz ### Tape & Reel NOTES: 1 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ±0,2 2 CAMBER IN COMPLANCE WITH ELA 481 3 POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET,NOT POCKET HOLE | Packaging information: | | | | |------------------------|--------|--|--| | Tape Width | 12mm | | | | Reel Size | 7inch | | | | Device Cavity Pitch | 8mm | | | | Device Per Reel | 1000EA | | | Figure 33. Tape & Reel Information BeRex ●website: <u>www.berex.com</u> ●email: <u>sales@berex.com</u> 13 ## 5 MHz-9000 MHz #### **Package Marking** | | Marking information: | |---------|----------------------| | BSW6622 | Device Name | | YY | Year | | ww | Work Week | | XX | Wafer Lot Number | Figure 34. Package Marking ### Lead plating finish 100% Tin Matte finish (All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.) ### MSL / ESD Rating | ESD information1: | | | |-------------------|----------------------------|--| | Rating | Class 1C (±1500V) | | | Test | Human Body Model (HBM) | | | Standard | JEDEC Standard JS-001-2017 | | | | MSL information: | |----------|-------------------------------------| | Rating | Level 1 at +260°C convection reflow | | Standard | JEDEC Standard J-STD-020 | | | ESD information2 : | |----------|----------------------------| | Rating | Class C3 (±1000V) | | Test | Charged Device Model (CDM) | | Standard | JEDEC Standard JS-002-2018 | Proper ESD procedures should be followed when handling the device. ### **RoHS Compliance** This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU. This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers. #### **NATO CAGE code:** |--| BeRex ●website: <u>www.berex.com</u> ●e ●email: <u>sales@berex.com</u>