Product Description

The BSW7221V is a reflective SPDT RF switch that can be used in high power and good performance for Automotive, WLAN $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n} / \mathrm{ac} / \mathrm{ax} / \mathrm{be}$ Networks, Bluetooth, Ultra-Wide-Band (UWB) and Wireless Communication applications.
This device is packaged in RoHS2-compliant with $1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm} \times 0.5 \mathrm{~mm}, 6$-Lead UDFN package. It must be used with back side ground soldering.
The BSW7221V has robust ESD protection circuits at all pins and temperature performance. (Operating temperature range : -40 to $+105^{\circ} \mathrm{C}$)
This switch does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor. This device also has a high linearity performance over all temperature range such as IIP3, IIP2. AEC-Q100 Grade 2 was conditionally qualified with $1^{\text {st }}$ lot.

Block Diagram

Figure 1. Functional Block Diagram

Applications

- Automotive
- WLAN 802.11 a/b/g/n/ac/ax/be
- Ultra-Wide-Band (UWB)
- Drone
- Bluetooth
- NFC / Smart Card
- Wireless Infrastructure
- Remote keyless entry
- Telematics / Infotainment
- Two-way radios
- Wireless control systems
- GPS/Navigation

Package Type

$1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$, 6-Lead UDFN Package
Figure 2. Package Type

Device Features

- AEC-Q100 Grade 2 Qualified ($1^{\text {st }}$ Lot)
- Frequency range : 5 MHz to 8.5 GHz
- Fast Switching Time : 90 to 135 ns
- Supply Voltage : 2.7 V to 3.6 V
- Low insertion loss
: 0.37 dB @ 2.45 GHz
: 0.59dB @ 5.75GHz
- High isolation
: 44dB @ 2.45GHz
: 29dB @ 5.75 GHz
- Input 1 dB output compression
: 37dBm @ 2.45 GHz
: 35dBm @ 5.75 GHz
: 34dBm @ 8.00GHz
- High IIP3
: 65dBm @ 2.45GHz
: 62dBm @ 5.75GHz
- ESD protection
: HBM 2.0kV
: CDM 1.0kV
- 6-Lead UDFN package : $1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
- Operating temperature range : $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- Lead-free/RoHS2-compliant UDFN package

BSW7221V
Low Loss / Fast Switching SPDT RF switch for Automotive
$5 \mathrm{MHz}-8500 \mathrm{MHz}$

Electrical Specifications

$V D D=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} 1 \mathrm{Low}=0 \mathrm{~V}, \mathrm{~V} 1$ High $=3.3 \mathrm{~V}, \mathrm{Z}_{\mathrm{L}}=50 \Omega$, Excluding SMA Connector and PCB loss*, unless otherwise noted.

Table 1. Electrical Specifications

Parameter	Path	Condition	Min	Typ	Max	Unit
Operating Frequency			5		8500	MHz
Insertion Loss	RFC - RFx	$\begin{gathered} 13.56 \mathrm{MHz} \\ 1 \mathrm{GHz} \\ 2 \mathrm{GHz} \\ 3 \mathrm{GHz} \\ 4 \mathrm{GHz} \\ 5 \mathrm{GHz} \\ 6 \mathrm{GHz} \\ 7 \mathrm{GHz} \\ 8 \mathrm{GHz} \\ 8.5 \mathrm{GHz} \end{gathered}$		$\begin{aligned} & 0.29 \\ & 0.32 \\ & 0.36 \\ & 0.38 \\ & 0.42 \\ & 0.47 \\ & 0.61 \\ & 0.53 \\ & 0.57 \\ & 0.81 \end{aligned}$		dB
Isolation	RFC - RFx	$\begin{gathered} 13.56 \mathrm{MHz} \\ 1 \mathrm{GHz} \\ 2 \mathrm{GHz} \\ 3 \mathrm{GHz} \\ 4 \mathrm{GHz} \\ 5 \mathrm{GHz} \\ 6 \mathrm{GHz} \\ 7 \mathrm{GHz} \\ 8 \mathrm{GHz} \\ 8.5 \mathrm{GHz} \end{gathered}$		$\begin{aligned} & 83 \\ & 52 \\ & 47 \\ & 39 \\ & 34 \\ & 31 \\ & 30 \\ & 27 \\ & 24 \\ & 23 \end{aligned}$		dB
Isolation	RFx - RFx	$\begin{gathered} 13.56 \mathrm{MHz} \\ 1 \mathrm{GHz} \\ 2 \mathrm{GHz} \\ 3 \mathrm{GHz} \\ 4 \mathrm{GHz} \\ 5 \mathrm{GHz} \\ 6 \mathrm{GHz} \\ 7 \mathrm{GHz} \\ 8 \mathrm{GHz} \\ 8.5 \mathrm{GHz} \end{gathered}$		$\begin{aligned} & 79 \\ & 45 \\ & 36 \\ & 33 \\ & 30 \\ & 28 \\ & 25 \\ & 23 \\ & 21 \\ & 20 \end{aligned}$		dB
Return Loss	RFC, RF1, RF2	$5 \mathrm{MHz}-8.5 \mathrm{GHz}$ (Active port)		20		dB

[^0]BSW7221V
Low Loss / Fast Switching SPDT RF switch for Automotive

Electrical Specifications

$V D D=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} 1 \mathrm{Low}=0 \mathrm{~V}, \mathrm{~V} 1$ High $=3.3 \mathrm{~V}, \mathrm{Z}_{\mathrm{L}}=50 \Omega$, Excluding SMA Connector and PCB loss*, unless otherwise noted.

Table 2 Electrical Specifications

Parameter	Path	Condition	Min	Typ	Max	Unit
Operating Frequency			5		8500	MHz
Input P1dB	RFC - RFx	$\begin{gathered} \hline 13.56 \mathrm{MHz} \\ 2.45 \mathrm{GHz} \\ 5.75 \mathrm{GHz} \\ 8.00 \mathrm{GHz} \end{gathered}$		$\begin{aligned} & 33 \\ & 37 \\ & 35 \\ & 34 \end{aligned}$		dBm
Input IP3**	RFC - RFx	$\begin{aligned} & 2.45 \mathrm{GHz} \\ & 5.75 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 65 \\ & 62 \end{aligned}$		dBm
Input IP2**	RFC - RFx	$\begin{aligned} & 2.45 \mathrm{GHz} \\ & 5.75 \mathrm{GHz} \end{aligned}$		$\begin{gathered} 110 \\ 90 \end{gathered}$		dBm
$2^{\text {nd }}$ Harmonic***	RFC - RFx	$\begin{aligned} & 2.45 \mathrm{GHz} \\ & 5.75 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 95 \\ & 75 \end{aligned}$		dBc
$3^{\text {rd }}$ Harmonic***	RFC - RFx	$\begin{aligned} & 2.45 \mathrm{GHz} \\ & 5.75 \mathrm{GHz} \end{aligned}$		$\begin{gathered} 100 \\ 95 \end{gathered}$		dBc
Switching Time	RFC - RFx	50\% control to 90\% RF 50\% control to 10\% RF		$\begin{gathered} 135 \\ 90 \end{gathered}$		ns
Settling Time	RFC - RFx	50% CTRL to 0.05 dB final value Rising Edge 50% CTRL to 0.05 dB final value Falling Edge		$\begin{aligned} & 145 \\ & 110 \end{aligned}$		ns

The typical spurious performance of the BSW7221V is $-115 \mathrm{dBm} / 10 \mathrm{~Hz}$ or less @ Over 10MHz

* Excluding SMA Connector and PCB loss.
$1 \mathrm{GHz}(0.15 \mathrm{~dB}), 2 \mathrm{GHz}(0.23 \mathrm{~dB}), 3 \mathrm{GHz}(0.31 \mathrm{~dB}), 4 \mathrm{GHz}(0.39 \mathrm{~dB}), 5 \mathrm{GHz}(0.45 \mathrm{~dB}), 6 \mathrm{GHz}(0.53 \mathrm{~dB}), 7 \mathrm{GHz}(0.67 \mathrm{~dB}), 8 \mathrm{GHz}(0.73 \mathrm{~dB})$
** The two-tone Power is 18 dBm each and Tone spacing is 20 KHz .
*** Tone Power is 18 dBm .

BSW7221V
Low Loss / Fast Switching SPDT RF switch for Automotive
$5 \mathrm{MHz}-8500 \mathrm{MHz}$

Pin Configurations

Figure 3 . Pin Configurations (Top View)

Table 3. Pin Descriptions

No.	Pin Name	Descriptions
1	V1	Digital Control Logic Input
2	RFC	RF Common port
3	VDD	Supply Voltage
4	RF2	RF2 port
5	GND	Ground
6	RF1	RF1 port
Pad	Exposed Pad	Ground

Table 4. V1 Control Truth Table

V1	RFC-RF1	RFC-RF2
0	OFF	ON
1	ON	OFF

Table 5. Recommended Operation Conditions*

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	VDD	2.7	3.3	3.6	V
Supply Current	IDD	-	170	350	$\mu \mathrm{A}$
Digital Input Control (V1)	V1 High	1.0	-	3.3	V
	V1 Low	0	-	0.7	V
Operating Temperature Range	To	-40	+25	+105	${ }^{\circ} \mathrm{C}$
RF Input Power, CW Freq. $=2.45 \mathrm{GHz}, 5.75 \mathrm{GHz}$ any port, $\mathrm{Z}_{\mathrm{L}}=50 \Omega$	-	-	-	30	dBm

*Specifications are not guaranteed over all recommended operating conditions.

Table 6. Absolute Maximum Ratings

Parameter			Symbol	Min	Max	Unit
Supply Voltage			VDD	-0.3	3.6	V
Digital Input Voltage (V1)			V1	-0.3	3.6	V
Maximum Input Power, CW ($+25^{\circ} \mathrm{C}$)			-	-	Input P1dB	dBm
Storage Temperature range			-	-65	+150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature			-	-	+150	${ }^{\circ} \mathrm{C}$
ESD	HBM	All pins	-	-	2000	V
	CDM	All pins	-	-	1000	V

BSW7221V
5MHz-8500MHz

Typical Performances

$\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, V1 Low $=0 \mathrm{~V}, \mathrm{~V} 1 \mathrm{High}=3.3 \mathrm{~V}, \mathrm{Z}_{\mathrm{L}}=50 \Omega$, Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 4. Insertion Loss vs. Vdd (RFC - RFx)

Figure 6. Return Loss (RFC, RFx)

Figure 5. Insertion Loss vs. Temp (RFC - RFx)

Figure 7. Return Loss vs. Temp (RFC)

Typical Performances

$\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} 1 \mathrm{Low}=0 \mathrm{~V}, \mathrm{~V} 1 \mathrm{High}=3.3 \mathrm{~V}, \mathrm{Z}_{\mathrm{L}}=50 \Omega$, Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 8. Isolation vs. Vdd (RFC - RFx)

Figure 10. Isolation vs. Vdd (RFx - RFx)

Figure 9. Isolation vs. Temp (RFC - RFx)

Figure 11. Isolation vs. Temp (RFx - RFx)

Evaluation Board

Figure 12. Evaluation Board Layout

Figure 13. Evaluation Board Schematic

Figure 14. Evaluation Board PCB Layer Information

No.	Ref Des	Part Qty	Part Number	Remark
1	C1	1	CAP 1005 1uF J 50V	
2	C2,C3*	2	CAP 1005100 pF J 50V	
3	C4	2	CAP 1005 DNI	
4	C5	1	CAP 0603 DNI	
6	J1,J2	2	2 Pin Header	
7	RFC, RF1, RF2	3	SMA_END_LAUNCH	
8	U1	1	BSW7221V	

* C3 should be placed near the device.

Table 7. Bill of Material - Evaluation Board

Package Outline Drawing

IDP VIEW

BLTTUM VIEW

$\phi 0.10 @|C| A \mid B$

SIDE VIEW
NOTES :

1. Dimension and tolerancing conform to ASME Y14.5M-1994.
2. Controlling Dimensions : Millimeter. Converted INCH dimension are not necessarily exact.
3. Dimension bapplied to Metallized terminal and is measured between 0.15 to 0.30 mm from terminal tip.

Figure 15. Package Outline Drawing

Figure 16. Recommended Land Pattern

Tape \& Reel

Packaging information:	
Tape Width	8 mm
Reel Size	7inch
Device Cavity Pitch	4 mm
Device Per Reel	3000 EA

Figure 17. Tape \& Reel

Package Marking

Marking information:	
Marking Code	
2	The number of switch throw
V	Sequential Number
$X X$	Wafer Lot Number

Figure 18. Package Marking

Lead plating finish

100\% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD information:	
Rating	Class 2 (2000V)
Test	Human Body Model (HBM)
Standard	AEC-Q100-002

ESD information:	
Rating	Class C3 (1000V)
Test	Charged Device Model (CDM)
Standard	AEC-Q100-011

MSL information:	
Rating	Level 1 at $+260^{\circ} \mathrm{C}$ convection reflow
Standard	JEDEC Standard J-STD-020

Proper ESD procedures should be followed when handling the device.

RoHS2 Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than $0.1 \%(w / w)$ in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

2	N	9	6	F

[^0]: * Excluding SMA Connector and PCB loss.
 $1 \mathrm{GHz}(0.15 \mathrm{~dB}), 2 \mathrm{GHz}(0.23 \mathrm{~dB}), 3 \mathrm{GHz}(0.31 \mathrm{~dB}), 4 \mathrm{GHz}(0.39 \mathrm{~dB}), 5 \mathrm{GHz}(0.45 \mathrm{~dB}), 6 \mathrm{GHz}(0.53 \mathrm{~dB}), 7 \mathrm{GHz}(0.67 \mathrm{~dB}), 8 \mathrm{GHz}(0.73 \mathrm{~dB})$

