

5MHz-8500MHz

Product Description

The BSW7221V is a reflective SPDT RF switch that can be used in high power and good performance for Automotive, WLAN 802.11 a/b/g/n/ac/ax/be Networks, Bluetooth, Ultra-Wide-Band (UWB) and Wireless Communication applications.

This device is packaged in RoHS2-compliant with 1.5mm x 1.5mm x 0.5mm, 6-Lead UDFN package. It must be used with back side ground soldering.

The BSW7221V has robust ESD protection circuits at all pins and temperature performance. (Operating temperature range : -40 to +105°C)

This switch does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor. This device also has a high linearity performance over all temperature range such as IIP3, IIP2. AEC-Q100 Grade 2 was conditionally qualified with 1st lot.

Block Diagram

Figure 1. Functional Block Diagram

Applications

- Automotive
- WLAN 802.11 a/b/g/n/ac/ax/be
- Ultra-Wide-Band (UWB)
- Drone
- Bluetooth
- NFC / Smart Card
- Wireless Infrastructure
- Remote keyless entry
- Telematics / Infotainment
- Two-way radios
- Wireless control systems
- GPS/Navigation

Package Type

 $1.5 mm \ x \ 1.5 mm \ x \ 0.5 mm$, 6-Lead UDFN Package

Figure 2. Package Type

Device Features

AEC-Q100 Grade 2 Qualified (1st Lot)
 Frequency range : 5 MHz to 8.5 GHz

 \bullet Fast Switching Time : 90 to 135 ns

• Supply Voltage : 2.7V to 3.6V

Low insertion loss

: 0.37dB @ 2.45GHz

: 0.59dB @ 5.75GHz

High isolation

: 44dB @ 2.45GHz

: 29dB @ 5.75GHz

• Input 1 dB output compression

: 37dBm @ 2.45GHz

: 35dBm @ 5.75GHz

: 34dBm @ 8.00GHz

• High IIP3

: 65dBm @ 2.45GHz

: 62dBm @ 5.75GHz

• ESD protection

: HBM 2.0kV

: CDM 1.0kV

• 6-Lead UDFN package: 1.5mm x 1.5mm x 0.5mm

• Operating temperature range : -40°C to +105°C

• Lead-free/RoHS2-compliant UDFN package

5MHz-8500MHz

Electrical Specifications

 $VDD = 3.3V, T_A = 25^{\circ}C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50\Omega, Excluding SMA Connector and PCB loss*, unless otherwise noted.$

Table 1. Electrical Specifications

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating Frequency			5		8500	MHz
Insertion Loss	RFC - RFx	13.56MHz 1GHz 2GHz 3GHz 4GHz 5GHz 6GHz 7GHz 8GHz	3	0.29 0.32 0.36 0.38 0.42 0.47 0.61 0.53 0.57	3300	dB
Isolation	RFC - RFx	13.56MHz 1GHz 2GHz 3GHz 4GHz 5GHz 6GHz 7GHz 8GHz		83 52 47 39 34 31 30 27 24 23		dB
Isolation	RFx - RFx	13.56MHz 1GHz 2GHz 3GHz 4GHz 5GHz 6GHz 7GHz 8GHz		79 45 36 33 30 28 25 23 21 20		dB
Return Loss	RFC, RF1, RF2	5MHz – 8.5GHz (Active port)		20		dB

^{*} Excluding SMA Connector and PCB loss.

1GHz (0.15dB), 2GHz (0.23dB), 3GHz (0.31dB), 4GHz (0.39dB), 5GHz (0.45dB), 6GHz (0.53dB), 7GHz (0.67dB), 8GHz (0.73dB)

5MHz-8500MHz

Electrical Specifications

 $VDD = 3.3V, \ T_A = 25^{\circ}C, \ V1 \ Low = 0V, \ V1 \ High = 3.3V, \ Z_L = 50\Omega, \ Excluding \ SMA \ Connector \ and \ PCB \ loss^*, \ unless \ otherwise \ noted.$

Table 2 Electrical Specifications

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating Frequency			5		8500	MHz
Input P1dB	RFC - RFx	13.56MHz 2.45GHz 5.75GHz 8.00GHz		33 37 35 34		dBm
Input IP3**	RFC - RFx	2.45GHz 5.75GHz		65 62		dBm
Input IP2**	RFC - RFx	2.45GHz 5.75GHz		110 90		dBm
2 nd Harmonic***	RFC - RFx	2.45GHz 5.75GHz		95 75		dBc
3 rd Harmonic***	RFC - RFx	2.45GHz 5.75GHz		100 95		dBc
Switching Time	RFC - RFx	50% control to 90% RF 50% control to 10% RF		135 90		ns
Settling Time	RFC - RFx	50% CTRL to 0.05dB final value Rising Edge 50% CTRL to 0.05dB final value Falling Edge		145 110		ns

The typical spurious performance of the BSW7221V is -115dBm / 10Hz or less @ Over 10MHz

^{*} Excluding SMA Connector and PCB loss.

¹GHz (0.15dB), 2GHz (0.23dB), 3GHz (0.31dB), 4GHz (0.39dB), 5GHz (0.45dB), 6GHz (0.53dB), 7GHz (0.67dB), 8GHz (0.73dB)

^{**} The two-tone Power is 18dBm each and Tone spacing is 20KHz.

^{***} Tone Power is 18dBm.

5MHz-8500MHz

Pin Configurations

Figure 3 . Pin Configurations (Top View)

Table 3. Pin Descriptions

No.	Pin Name	Descriptions
1	V1 Digital Control Logic Input	
2	RFC	RF Common port
3	VDD	Supply Voltage
4	RF2	RF2 port
5	GND	Ground
6	RF1	RF1 port
Pad	Exposed Pad	Ground

Table 4. V1 Control Truth Table

V1	RFC-RF1	RFC-RF2
0	OFF	ON
1	ON	OFF

Table 5. Recommended Operation Conditions*

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	VDD	2.7	3.3	3.6	V
Supply Current	IDD	-	170	350	μΑ
Digital Input Control (1/1)	V1 High	1.0	-	3.3	V
Digital Input Control (V1)	V1 Low	0	-	0.7	V
Operating Temperature Range	То	-40	+25	+105	°C
RF Input Power, CW Freq. = 2.45GHz, 5.75GHz any port, Z_t =50 Ω	-	-	-	30	dBm

^{*}Specifications are not guaranteed over all recommended operating conditions.

Table 6. Absolute Maximum Ratings

Parameter		Symbol	Min	Max	Unit	
	Supply Voltage		VDD	-0.3	3.6	V
Digital Input Voltage (V1)		V1	-0.3	3.6	V	
Maximur	Maximum Input Power, CW (+25°C)		-	-	Input P1dB	dBm
Stora	Storage Temperature range		-	-65	+150	°C
Maximu	Maximum Junction Temperature		-	-	+150	°C
ESD	НВМ	All pins	-	-	2000	V
ESD	CDM	All pins	-	-	1000	V

BeRex ●website: <u>www.berex.com</u> ●email: <u>sales@berex.com</u> 4

5MHz-8500MHz

Typical Performances

VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 4. Insertion Loss vs. Vdd (RFC - RFx)

Figure 5. Insertion Loss vs. Temp (RFC - RFx)

Figure 6. Return Loss (RFC, RFx)

Figure 7. Return Loss vs. Temp (RFC)

5MHz-8500MHz

Typical Performances

VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 8. Isolation vs. Vdd (RFC - RFx)

Figure 9. Isolation vs. Temp (RFC - RFx)

Figure 10. Isolation vs. Vdd (RFx - RFx)

Figure 11. Isolation vs. Temp (RFx - RFx)

Ver. 0.1

5MHz-8500MHz

Evaluation Board

Figure 12. Evaluation Board Layout

Figure 13. Evaluation Board Schematic

1	C1	1	CAP 1005 1uF J 50V	
2	C2,C3*	2	CAP 1005 100pF J 50V	
3	C4	2	CAP 1005 DNI	
4	C5	1	CAP 0603 DNI	
6	J1,J2	2	2 Pin Header	
7	RFC, RF1, RF2	3	SMA_END_LAUNCH	
8	U1	1	BSW7221V	

Part Number

Part Qty

Figure 14. Evaluation Board PCB Layer Information

Table 7. Bill of Material - Evaluation Board

Ver. 0.1

^{*} C3 should be placed near the device.

0.05 C

E2

Pin 1 Identifier C0.15×45*

Low Loss / Fast Switching SPDT RF switch for Automotive

5MHz-8500MHz

Package Outline Drawing

♦ 0.10 **M** C A B

SIDE VIEW

NOTES :

- 1. Dimension and tolerancing conform to ASME Y14.5M-1994.
- 2. Controlling Dimensions : Millimeter. Converted INCH dimension are not necessarily exact.
- 3. Dimension b applied to Metallized terminal and is measured between 0.15 to 0.30mm from terminal tip.

N≻∑m□J	Common					
B	DIMENSI	ONS MILLI	METER	DIME	II SNDISNE	NCH
Ē	MIN.	N□M.	MAX.	MIN.	N□M.	MAX.
Α	0.45	0.50	0.55	0.018	0.020	0.022
АЗ	0.127 REF.			0.0	005 REI	F.
A1	0.00	0.02	0.05	0.000	0.001	0.002
b	0.20	0.25	0.30	0.008	0.010	0.012
D	1.45	1.50	1.55	0.057	0.059	0.061
DS.	1.15	1.20	1.25	0.045	0.047	0.049
Ε	1.45	1.50	1.55	0.057	0.059	0.061
E2	0.65	0.70	0.75	0.026	0.028	0.030
a	0.500 BSC			0.	020 BS	С
Г	0.125	0.175	0.225	0.005	0.007	0.009
Κ	0.230	_	_	0.009	_	_

Figure 15. Package Outline Drawing

Figure 16. Recommended Land Pattern

BeRex •website: www.berex.com •email: sales@berex.com 8

5MHz-8500MHz

Tape & Reel

Packaging information:				
Tape Width	8mm			
Reel Size	7inch			
Device Cavity Pitch	4mm			
Device Per Reel	3000EA			

Figure 17. Tape & Reel

Package Marking

Marking information:				
Marking Code				
2 The number of switch throw				
V	Sequential Number			
XX	Wafer Lot Number			

Figure 18. Package Marking

5MHz-8500MHz

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD information:		
Rating	Class 2 (2000V)	
Test	Human Body Model (HBM)	
Standard	AEC-Q100-002	

ESD information:		
Rating	Class C3 (1000V)	
Test	Charged Device Model (CDM)	
Standard	AEC-Q100-011	

MSL information:				
Rating	ting Level 1 at +260°C convection reflow			
Standard	JEDEC Standard J-STD-020			

Proper ESD procedures should be followed when handling the device.

RoHS2 Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

_				
2	N	9	6	F

BeRex •website: www.berex.com

•email: sales@berex.com