Product Description

The BSW7321 is a reflective SPDT RF switch that can be used in high power and good performance WLAN $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n} / \mathrm{ac} / \mathrm{ax}$, DOCSIS 3.0/3.1 and Wireless Communication applications.
This device is packaged in RoHS2-compliant with $1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$, 6-Lead UDFN package. It must be used with back side ground soldering.
The BSW7321 has robust ESD protection circuits at all pins and temperature performance (operating temperature range : -40 to $+105^{\circ} \mathrm{C}$).
This switch does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor. This device also has a high linearity performance over all temperature range such as IIP3, IIP2.
A functional block diagram is shown in Figure 1.

Block Diagram

Figure 1 Functional Block Diagram

Applications

- WiMAX 802.16
- WLAN $802.11 \mathrm{a} / \mathrm{b} / \mathrm{g} / \mathrm{n} / \mathrm{ac} / \mathrm{ax}$
- DOCSIS 3.0/3.1
- Drone
- Bluetooth
- Wireless Infrastructure
- Remote keyless entry
- Telematics / Infotainment
- Two-way radios
- Wireless control systems
- GPS/Navigation

Package Type

$1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$, 6-Lead UDFN Package Figure 2 Package Type

Device Features

- Output frequency range : 5 MHz to 8.0 GHz
- Fast Switching Time : 105 to 145 ns
- Supply Voltage : 2.7 V to 3.6 V
- Low insertion loss
: 0.58dB @ 2.45 GHz
: $0.86 \mathrm{~dB} @ 5.75 \mathrm{GHz}$
- High isolation
: 43dB @ 2.45GHz
: 30dB @ 5.75GHz
- Input 1 dB output compression : 39dBm @ 2.45 GHz
: 39dBm @ 5.75 GHz
- High IIP3
: 65dBm @ 2.45 GHz
: 65dBm @ 5.75GHz
- ESD protection (HBM) : 2.0kV @ all pins
- 6-Lead UDFN package : $1.5 \mathrm{~mm} \times 1.5 \mathrm{~mm} \times 0.5 \mathrm{~mm}$
- Operating temperature range : $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
- Lead-free/RoHS2-compliant UDFN package

BSW7321

Electrical Specifications

Typical conditions are at VDD $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, $\mathrm{V} 1 \mathrm{Low}=0 \mathrm{~V}, \mathrm{~V} 1 \mathrm{High}=3.3 \mathrm{~V}, \mathrm{Z}_{\mathrm{L}}=50 \Omega$, Excluding SMA Connector and PCB loss ${ }^{(1)}$, unless otherwise noted.

Table 1 Electrical Specifications

Parameter	Path	Condition	Min	Typ	Max	Unit
Operating Frequency			5		8000	MHz
Insertion Loss	RFC - RFx	1 GHz 2GHz 3GHz 4GHz 5 GHz 6 GHz 7GHz 8GHz		$\begin{aligned} & 0.50 \\ & 0.57 \\ & 0.61 \\ & 0.59 \\ & 0.65 \\ & 0.97 \\ & 0.88 \\ & 0.96 \end{aligned}$		dB
Isolation	RFC - RFx	1 GHz 2GHz 3 GHz 4 GHz 5 GHz 6 GHz 7GHz 8GHz		$\begin{aligned} & 52 \\ & 46 \\ & 30 \\ & 35 \\ & 32 \\ & 30 \\ & 29 \\ & 26 \end{aligned}$		dB
Isolation	RFx - RFx	1 GHz 2GHz 3 GHz 4GHz 5 GHz 6 GHz 7GHz 8GHz		$\begin{aligned} & 44 \\ & 36 \\ & 33 \\ & 30 \\ & 29 \\ & 26 \\ & 25 \\ & 23 \end{aligned}$		dB
Return Loss	RFC, RF1, RF2	$5 \mathrm{MHz}-8 \mathrm{GHz}$ (Active port)		15		dB
Input P1dB	RFC - RFx	$\begin{aligned} & 2.45 \mathrm{GHz} \\ & 5.75 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 39 \\ & 39 \end{aligned}$		dBm
Input IP3 ${ }^{(2)}$	RFC - RFx	$\begin{aligned} & 2.45 \mathrm{GHz} \\ & 5.75 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 65 \\ & 65 \\ & \hline \end{aligned}$		dBm
Input IP2 ${ }^{(2)}$	RFC - RFx	$\begin{aligned} & 2.45 \mathrm{GHz} \\ & 5.75 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & \hline 100 \\ & 100 \\ & \hline \end{aligned}$		dBm
$2^{\text {nd }}$ Harmonic ${ }^{(3)}$	RFC - RFx	$\begin{aligned} & 2.45 \mathrm{GHz} \\ & 5.75 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 90 \\ & 90 \\ & \hline \end{aligned}$		dBc
$3^{\text {rd }}$ Harmonic ${ }^{(3)}$	RFC - RFx	$\begin{aligned} & 2.45 \mathrm{GHz} \\ & 5.75 \mathrm{GHz} \end{aligned}$		$\begin{aligned} & 105 \\ & 105 \\ & \hline \end{aligned}$		dBc
Switching Time	RFC - RFx	50\% control to 90\% RF 50\% control to 10% RF		$\begin{aligned} & 145 \\ & 105 \end{aligned}$		ns
Settling Time	RFC - RFx	50% CTRL to 0.05 dB final value Rising Edge 50% CTRL to 0.05 dB final value Falling Edge		$\begin{aligned} & 155 \\ & 115 \\ & \hline \end{aligned}$		ns

The typical spurious performance of the BSW7321 is $-115 \mathrm{dBm} / 10 \mathrm{~Hz}$ @ Over 10 MHz
(1) Excluding SMA Connector and PCB loss.
$1 \mathrm{GHz}(0.14 \mathrm{~dB}), 2 \mathrm{GHz}(0.22 \mathrm{~dB}), 3 \mathrm{GHz}(0.27 \mathrm{~dB}), 4 \mathrm{GHz}(0.36 \mathrm{~dB}), 5 \mathrm{GHz}(0.41 \mathrm{~dB}), 6 \mathrm{GHz}(0.45 \mathrm{~dB}), 7 \mathrm{GHz}(0.59 \mathrm{~dB}), 8 \mathrm{GHz}(0.64 \mathrm{~dB})$
(2) The two-tone Power is 18 dBm each and Tone spacing is 20 KHz .
(3) Tone Power is 18 dBm .

BSW7321

Product Description

Figure 3 Functional Block Diagram

Table 2 Pin Descriptions

No.	Pin Name	Descriptions
1	V1	Digital Control Logic Input
2	RFC	RF Common port
3	VDD	Supply Voltage
4	RF2	RF2 port
5	GND	Ground
6	RF1	RF1 port
Pad	Exposed Pad	Ground

Table 3 V1 Control Truth Table

V1	RFC-RF1	RFC-RF2
0	OFF	ON
1	ON	OFF

Table 4 Recommended Operating Conditions*

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	VDD	2.7	3.3	3.6	V
Supply Current	IDD	-	170	-	$\mu \mathrm{A}$
Digital Input Control (V1)	V1 High	1.0	-	3.3	V
	V1 Low	0	-	0.7	V
Operating Temperature Range	To	-40	+25	+105	${ }^{\circ} \mathrm{C}$
RF Input Power, CW Freq. $=2.45 \mathrm{GHz}, 5.75 \mathrm{GHz}$ Any port, $\mathrm{Z}_{\mathrm{L}}=50 \Omega$	-	-	-	30	dBm

*Specifications are not guaranteed over all recommended operating conditions.

Table 5 Absolute Maximum Ratings

Parameter			Symbol	Min	Max	Unit
Supply Voltage			VDD	-0.3	3.6	V
Digital Input Voltage (V1)			V1	-0.3	3.6	V
Maximum Input Power, CW ($+25^{\circ} \mathrm{C}$)			-	-	Input P1dB	dBm
Storage Temperature range			-	-65	+150	${ }^{\circ} \mathrm{C}$
ESD	HBM	All pins	-	-	2000	V
	CDM	All pins	-	-	1000	V

Typical Performances

Typical conditions are at $\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} 1 \mathrm{Low}=0 \mathrm{~V}, \mathrm{~V} 1$ High $=3.3 \mathrm{~V}, \mathrm{Z}_{\mathrm{L}}=50 \Omega$, Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 4 Insertion Loss vs. Vdd (RFC - RFx)

Figure 6 Return Loss (RFC, RFx)

Figure 5 Insertion Loss vs. Temp (RFC - RFx)

Figure 7 Return Loss vs. Temp (RFC)

Typical Performances

Typical conditions are at $\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} 1 \mathrm{Low}=0 \mathrm{~V}, \mathrm{~V} 1$ High $=3.3 \mathrm{~V}, \mathrm{Z}_{\mathrm{L}}=50 \Omega$, Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure $\mathbf{8}$ Isolation vs. Vdd (RFC - RFx)

Figure 10 Isolation vs. Vdd (RFx - RFx)

Figure 9 Isolation vs. Temp (RFC-RFx)

Figure 11 Isolation vs. Temp (RFx - RFx)

Evaluation Board

Figure 12 Evaluation Board Layout

Figure 13 Evaluation Board Schematic

Figure 14 Evaluation Board PCB Layer Information

No.	Ref Des	Part Qty	Part Number	Remark
1	C1	1	CAP 1005 1uF J 50V	
2	C2,C3*	2	CAP 1005 100pF J 50V	
3	C4	2	CAP 1005 DNI	
4	C5	1	CAP 0603 DNI	
6	J1,J2	2	2 Pin Header	
7	RFC, RF1, RF2	3	SMA_END_LAUNCH	
8	U1	1	BSW7321	

* C3 should be placed near the device.

Package Outline Drawing

TDP VIEW

Pin 1 index area

SIDE VIEW

NOTES:

1. Dimension and tolerancing contorm to ASME Y $14.5 \mathrm{M}-1994$.
2. Contrilling Dimensions: Millimeter, Converted INCH dimension are not necessarily exact.
3. Dimension b applied to Metallized terminal ond is measured between 0.15 to 0.30 mm from terminal tip.

BOTTDM VIEW

$\begin{aligned} & S \\ & \mathrm{Y} \\ & \mathrm{M} \\ & \mathrm{~B} \\ & \mathrm{~B} \end{aligned}$	Common					
	dimensions millimeter			DIMENSİNS INCH		
	MIN,	NDM.	MAX ${ }_{\text {i }}$	MIN,	NDM,	MAX,
A	0.45	0.50	0.55	0.018	0.020	0.022
A3	0.127 REF.			0.005 REF.		
A1	0.00	0.02	0.05	0.000	0.001	0.002
b	0.20	0.25	0.30	0.008	0.010	0.012
D	1.45	1.50	1.55	0.057	0.059	0.061
D2	1.15	1.20	1.25	0.045	0,047	0,049
E	1.45	1.50	1.55	0.057	0,059	0,061
E2	0.65	0.70	0.75	0.026	0,028	0.030
e		00 BS			20 BS	
L	0,125	0.175	0.225	0.005	0,007	0.009
K	0.230	-	-	0,009	-	-

Figure 15 Package Outline Drawing

Figure 16 Recommended Land Pattern

BSW7321

Tape \& Reel

Packaging information:	
Tape Width	8 mm
Reel Size	7inch
Device Cavity Pitch	4 mm
Device Per Reel	3000 EA

Figure 17 Tape \& Reel

Package Marking

Marking information:			
Marking Code 1		Marking Code 2	
S	RF Switch	2	The number of switch throw
2	The number of switch throw	D	Sequential Number
D	Sequential Number	XX	Wafer Lot Number
Y	Work Year		
XX	Wafer Lot Number		

Figure 18 Package Marking

Lead plating finish

100\% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C , Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD information:	
Rating	Class 2 (2000V)
Test	Human Body Model (HBM)
Standard	JS-001-2017

MSL information:	
Rating	Level 1 at $+260^{\circ} \mathrm{C}$ convection reflow
Standard	JEDEC Standard J-STD-020

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than $0.1 \%(w / w)$ in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

2	N	9	6	F

