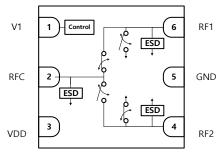


5MHz-8000MHz

Product Description

The BSW7321 is a reflective SPDT RF switch that can be used in high power and good performance WLAN 802.11 a/b/g/n/ac/ax, DOCSIS 3.0/3.1 and Wireless Communication applications.


This device is packaged in RoHS2-compliant with 1.5mm x 1.5mm x 0.5mm, 6-Lead UDFN package. It must be used with back side ground soldering.

The BSW7321 has robust ESD protection circuits at all pins and temperature performance (operating temperature range: -40 to +105°C).

This switch does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor. This device also has a high linearity performance over all temperature range such as IIP3, IIP2.

A functional block diagram is shown in Figure 1.

Block Diagram

Figure 1 Functional Block Diagram

Applications

- WiMAX 802.16
- WLAN 802.11 a/b/g/n/ac/ax
- DOCSIS 3.0/3.1
- Drone
- Bluetooth
- Wireless Infrastructure
- Remote keyless entry
- Telematics / Infotainment
- Two-way radios
- Wireless control systems
- GPS/Navigation

Package Type

1.5mm x 1.5mm x 0.5mm, 6-Lead UDFN Package Figure 2 Package Type

Device Features

• Output frequency range: 5 MHz to 8.0 GHz

• Fast Switching Time: 105 to 145 ns

• Supply Voltage: 2.7V to 3.6V

• Low insertion loss

: 0.58dB @ 2.45GHz

: 0.86dB @ 5.75GHz

• High isolation

: 43dB @ 2.45GHz

: 30dB @ 5.75GHz

Input 1 dB output compression

: 39dBm @ 2.45GHz

: 39dBm @ 5.75GHz

• High IIP3

: 65dBm @ 2.45GHz

: 65dBm @ 5.75GHz

• ESD protection (HBM): 2.0kV @ all pins

• 6-Lead UDFN package: 1.5mm x 1.5mm x 0.5mm

• Operating temperature range : -40°C to +105°C

Lead-free/RoHS2-compliant UDFN package

5MHz-8000MHz

Electrical Specifications

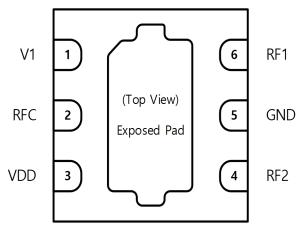
Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss⁽¹⁾, unless otherwise noted.

Table 1 Electrical Specifications

Parameter	Path	Condition	Min	Тур	Max	Unit
Operating Frequency			5		8000	MHz
Insertion Loss	RFC - RFx	1GHz 2GHz 3GHz 4GHz 5GHz 6GHz 7GHz 8GHz		0.50 0.57 0.61 0.59 0.65 0.97 0.88 0.96		dB
Isolation	RFC - RFx	1GHz 2GHz 3GHz 4GHz 5GHz 6GHz 7GHz 8GHz		52 46 41 35 32 30 29 26		dB
Isolation	RFx - RFx	1GHz 2GHz 3GHz 4GHz 5GHz 6GHz 7GHz 8GHz		44 36 33 30 29 26 25 23		dB
Return Loss	RFC, RF1, RF2	5MHz – 8GHz (Active port)		15		dB
Input P1dB	RFC - RFx	2.45GHz 5.75GHz		39 39		dBm
Input IP3 ⁽²⁾	RFC - RFx	2.45GHz 5.75GHz		65 65		dBm
Input IP2 ⁽²⁾	RFC - RFx	2.45GHz 5.75GHz		100 100		dBm
2 nd Harmonic ⁽³⁾	RFC - RFx	2.45GHz 5.75GHz		90 90		dBc
3 rd Harmonic ⁽³⁾	RFC - RFx	2.45GHz 5.75GHz		105 105		dBc
Switching Time	RFC - RFx	50% control to 90% RF 50% control to 10% RF		145 105		ns
Settling Time	RFC - RFx	50% CTRL to 0.05dB final value Rising Edge 50% CTRL to 0.05dB final value Falling Edge		155 115		ns

The typical spurious performance of the BSW7321 is –115dBm / 10Hz @ Over 10MHz

⁽¹⁾ Excluding SMA Connector and PCB loss.


¹GHz (0.14dB), 2GHz (0.22dB), 3GHz (0.27dB), 4GHz (0.36dB), 5GHz (0.41dB), 6GHz (0.45dB), 7GHz (0.59dB), 8GHz (0.64dB)

⁽²⁾ The two-tone Power is 18dBm each and Tone spacing is 20KHz.

⁽³⁾ Tone Power is 18dBm.

5MHz-8000MHz

Product Description

Figure 3 Functional Block Diagram

Table 2 Pin Descriptions

No.	Pin Name	Descriptions
1	V1	Digital Control Logic Input
2	RFC RF Common port	
3	VDD	Supply Voltage
4	RF2	RF2 port
5	GND	Ground
6	RF1	RF1 port
Pad	Exposed Pad	Ground

Table 3 V1 Control Truth Table

V1	RFC-RF1 RFC-RF2	
0	OFF	ON
1	ON	OFF

Table 4 Recommended Operating Conditions*

Parameter	Symbol	Min	Тур	Max	Unit
Supply Voltage	VDD	2.7	3.3	3.6	V
Supply Current	IDD	-	170	-	μΑ
Digital Invest Control (VA)	V1 High	1.0	-	3.3	V
Digital Input Control (V1)	V1 Low	0	-	0.7	V
Operating Temperature Range	То	-40	+25	+105	°C
RF Input Power, CW Freq.=2.45GHz, 5.75GHz Any port, Z _L =50Ω	-	-	-	30	dBm

 $[\]hbox{*Specifications are not guaranteed over all recommended operating conditions}.$

5MHz-8000MHz

Table 5 Absolute Maximum Ratings

Parameter		Symbol	Min	Max	Unit	
Supply Voltage		VDD	-0.3	3.6	V	
Digital Input Voltage (V1)		V1	-0.3	3.6	V	
Maximum Input Power, CW (+25°C)		-	-	Input P1dB	dBm	
Storage Temperature range		-	-65	+150	°C	
Maximum Junction Temperature		-	-	+150	°C	
rcp.	НВМ	All pins	-	-	2000	V
ESD	CDM	All pins	-	-	1000	V

Table 6 Package Thermal Characteristics

Parameter	Symbol	Value	Unit
Junction to Ambient Thermal Resistance	θ_{JA}	80	°C/W
Junction to Case Thermal Resistance	θ_{JC}	5	°C/W

Typical Performances

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 4 Insertion Loss vs. Vdd (RFC - RFx)

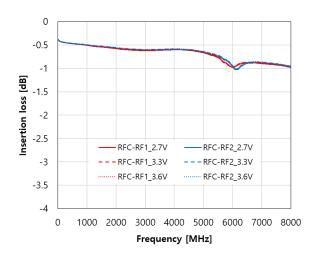


Figure 5 Insertion Loss vs. Temp (RFC - RFx)

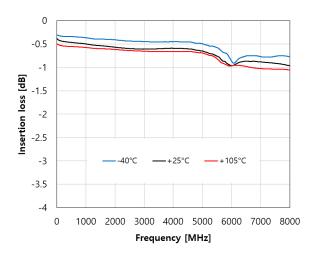


Figure 6 Return Loss (RFC, RFx)

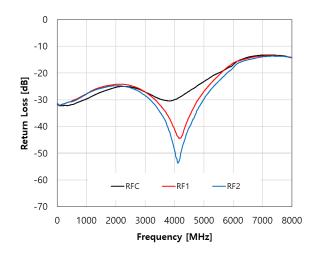
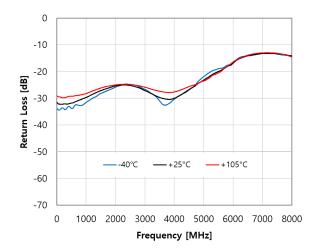



Figure 7 Return Loss vs. Temp (RFC)

Typical Performances

Typical conditions are at VDD = 3.3V, T_A = 25°C, V1 Low = 0V, V1 High = 3.3V, Z_L = 50 Ω , Excluding SMA Connector and PCB loss, unless otherwise noted.

Figure 8 Isolation vs. Vdd (RFC - RFx)

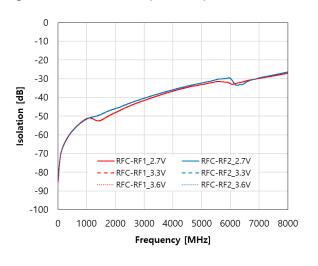


Figure 9 Isolation vs. Temp (RFC-RFx)

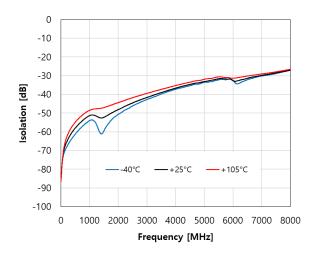


Figure 10 Isolation vs. Vdd (RFx - RFx)

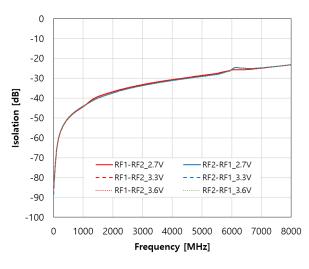
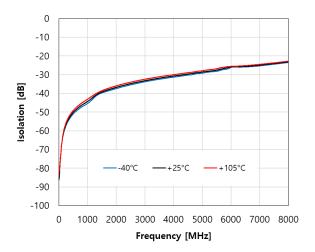
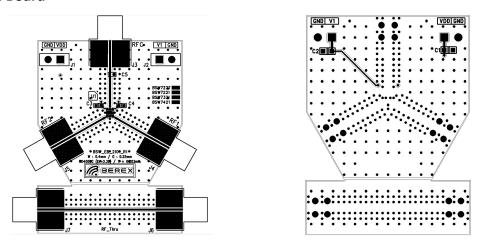
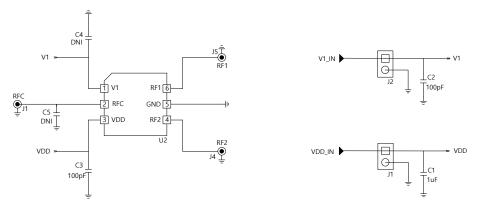



Figure 11 Isolation vs. Temp (RFx - RFx)


BeRex

•website: www.berex.com


•email: sales@berex.com


Evaluation Board

Figure 12 Evaluation Board Layout

Figure 13 Evaluation Board Schematic

No.	Ref Des	Part Qty	Part Number	Remark
1	C1	1	CAP 1005 1uF J 50V	
2	C2,C3*	2	2 CAP 1005 100pF J 50V	
3	C4	2	CAP 1005 DNI	
4	C5	1	CAP 0603 DNI	
6	J1,J2	2	2 Pin Header	
7	RFC, RF1, RF2	3	SMA_END_LAUNCH	Female
8	U1	1	BSW7321	

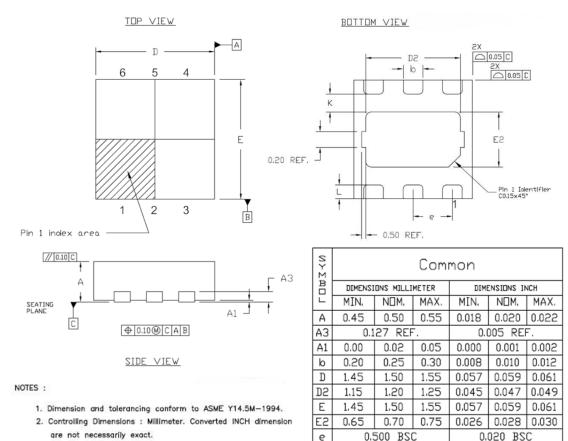
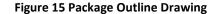

^{*} C3 should be placed near the device.

Figure 14 Evaluation Board PCB Layer Information

Table 7 Bill of Material - Evaluation Board



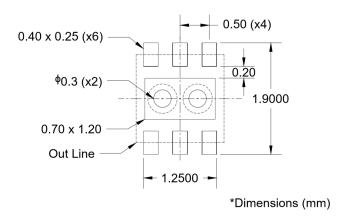
Package Outline Drawing

3. Dimension b applied to Metallized terminal and is measured

between 0.15 to 0.30mm from terminal tip.

0.125

0.230


Κ

0.175 0.225

0.005

0.009

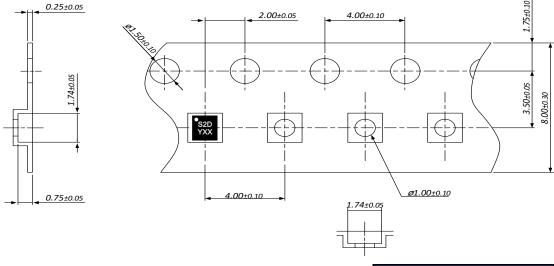

0.007 0.009

Figure 16 Recommended Land Pattern

Tape & Reel

Packaging information:				
Tape Width	8mm			
Reel Size	7inch			
Device Cavity Pitch	4mm			
Device Per Reel	3000EA			

Figure 17 Tape & Reel

Package Marking

	Marking information:							
	Marking Code 1	Marking Code 2						
S	S RF Switch		The number of switch throw					
2	The number of switch throw	D	Sequential Number					
D	D Sequential Number		Wafer Lot Number					
Y Work Year								
XX	Wafer Lot Number							

Figure 18 Package Marking

5MHz-8000MHz

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD information:				
Rating	Class 2 (2000V)			
Test	Human Body Model (HBM)			
Standard	JS-001-2017			

MSL information:					
Rating Level 1 at +260°C convection reflow					
Standard JEDEC Standard J-STD-020					

Proper ESD procedures should be followed when handling the device.

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

2	N	9	6	F
---	---	---	---	---

BeRex •website: www.berex.com

•email: sales@berex.com