

400MHz - 4000MHz

BVA1621

Device Features

- Integrate DSA to AMP Functionality
- 400 4000MHz Broadband Performance
- Wide Supply Voltage Range AMP : 3.3V to 5.25V DSA : 2.7V to 5.5V
- Low current : 85mA @ 5V, 48mA @ 3.3V
 - High Gain 20.3dB@800MHz, 17.5dB@2.7GHz (VDD=5V) 19.8dB@800MHz, 16.9dB@2.7GHz (VDD=3.3V)
- High OP1dB
 22dBm@800MHz, 21.6Bm@2.7GHz (VDD=5V)
 18.3dBm@800MHz, 18.1dBm@2.7GHz (VDD=3.3V)
- High OIP3 36.5dBm@800MHz, 36.4dBm@2.7GHz (VDD=5V) 32dBm@800MHz, 32.8dBm@2.7GHz (VDD=3.3V)
- Noise Figure at max gain setting 1.7dB@800MHz, 2.6dB@2.7GHz (VDD=5V)
- Attenuation Range : Up to 31.5dB / 0.5dB step
- Safe attenuation state transitions
- Excellent attenuation accuracy ±(0.15 + 3% x ATT) @800MHz ±(0.25 + 3% x ATT) @2.7GHz
- Programming modes Serial mode with Addressable function Latched Parallel Mode Direct Parallel Mode
- 3bit Addressable function LE/SERIN/CLK can be shared up to 8EA Chips
- Lead-free/RoHS2-compliant 32-lead 5mm x 5mm x 1.07mm
 SIP LGA SMT package
 SIP LGA SMT package

Product Description

The BVA1621 is a high performance, digitally controlled variable gain amplifier (DVGA) operating from 400MHz to 4GHz.

The BVA1621 integrates a high performance digital step attenuator (DSA) and a high linearity, broadband gain block amplifier operating voltage 3.3V to 5.25V DC within enable control using the small package.

Both DSA and gain block amplifier in BVA1621 are internally matched to 50 ohms and It is easy to use with minimum external matching components required.

The BVA1621 can control 6-bit attenuation to 0.5dB step up to 31.5dB and initialize to the maximum attenuation setting on power-up until next programming word is inputted.

In addition, Internal DSA has a 3-bit addressable function, so it can share up to 8 DSAs(or DVGAs) Latch Enable(LE), SERIN and CLOCK (CLK) pin. This has the advantage of reducing the number of IO pins when using multiple DSA or DVGA chip with addressable function.

The BVA1621 is targeted for use in wireless infrastructure, point-topoint, or can be used for any general purpose wireless application.

32-lead 5mm x 5mm x 1.07mm SIP LGA

Figure 1. Package Type

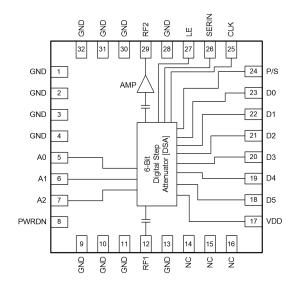


Figure 2. Functional Block Diagram

Application

- 5G/4G/3G Wireless infrastructure and other high performance RF application
- Microwave and Satellite Radio
- General purpose Wireless

400MHz - 4000MHz

BVA1621

Table 1. Electrical Specifications¹ @ VDD = 5V

Parameter		Condition	Min	Тур	Мах	Unit	
Operational Frequency Range			400		4000	MHz	
Gain ²		ATT = 0dB @ 800MHz		20.3			
		ATT = 0dB @ 1.8GHz	18.6			дЬ	
		ATT = 0dB @ 2.7GHz		17.5		dB	
		ATT = 0dB @ 3.5GHz		16.8			
Attenuation	Control range	0.5dB Step		0 - 31.5		dB	
Attenua	tion Step			0.5		dB	
400MHz - 1GHz					\pm (0.15 + 3% of ATT setting)		
Attenuation	1GHz - 2GHz	A 112 122 12 12			\pm (0.25 + 3% of ATT setting)	10	
Accuracy	2GHz - 3GHz	Any bit or bit combination			\pm (0.25 + 3% of ATT setting)	dB	
	3GHz - 4GHz				\pm (0.25 + 5% of ATT setting)		
land Datum land	400MHz - 2GHz			-10		10	
Input Return loss	2GHz - 4GHz	ATT = 0dB		-11		dB	
	400MHz - 2GHz	ATT = 0dB		-11		10	
Output Return loss	2GHz - 4GHz	ATT = 00B		-10		dB	
		ATT = 0dB @ 800MHz		22.0			
0		ATT = 0dB @ 1.8GHz		21.9		dDara	
Output Power for	1dB Compression	ATT = 0dB @ 2.7GHz		21.6		dBm	
		ATT = 0dB @ 3.5GHz		21.1			
		ATT = 0dB @ 800MHz		36.5			
		ATT = 0dB @ 1.8GHz		36.3		dD	
Output Third Orde	er Intercept Point	ATT = 0dB @ 2.7GHz		36.4		dBm	
		ATT = 0dB @ 3.5GHz		37.0			
		ATT = 0dB @ 800MHz		1.7			
		ATT = 0dB @ 1.8GHz		2.2		10	
Noise Figure		ATT = 0dB @ 2.7GHz		2.6		dB	
		ATT = 0dB @ 3.5GHz		2.9			
DSA Swite	ching time	50% CTRL(LE) to 90% or 10% RF		500	800	ns	
AMP Swit	ching time	50% CTRL(PWRDN) to 90% or 10% RF		150		ns	
Impe	dance			50		Ω	

1. Device performance : measured on a BeRex Evaluation board at 25°C, 50 Ω system, VDD=+5.0V.

2. Gain data has PCB & Connectors insertion loss de-embedded.

3. OIP3 measured with two tones at an output of 3dBm per tone separated by 1MHz.

400MHz - 4000MHz

BVA1621

Table 2. Electrical Specifications1@ VDD = 3.3V

Parameter		Condition	Min	Тур	Мах	Unit	
Operational Frequency Range			400		4000	MHz	
Gain ²		ATT = 0dB @ 800MHz		19.8			
		ATT = 0dB @ 1.8GHz 18.1			dB		
		ATT = 0dB @ 2.7GHz		16.9		ав	
		ATT = 0dB @ 3.5GHz		16.3			
Attenuation	Control range	0.5dB Step		0 - 31.5		dB	
Attenuat	tion Step			0.5		dB	
400MHz - 1GHz					\pm (0.15 + 3% of ATT setting)		
Attenuation	1GHz - 2GHz				\pm (0.25 + 3% of ATT setting)		
Accuracy	2GHz - 3GHz	Any bit or bit combination			\pm (0.25 + 3% of ATT setting)	dB	
	3GHz - 4GHz				\pm (0.25 + 5% of ATT setting)		
land Datum land	400MHz - 2GHz			-10		-ID	
Input Return loss	2GHz - 4GHz	ATT = 0dB		-10		dB	
	400MHz - 2GHz			-10		15	
Output Return loss	2GHz - 4GHz	ATT = 0dB		-10		dB	
		ATT = 0dB @ 800MHz		18.3			
0	140.0	ATT = 0dB @ 1.8GHz		18.5		-	
Output Power for	1dB Compression	ATT = 0dB @ 2.7GHz		18.1		dBm	
		ATT = 0dB @ 3.5GHz		17.8			
		ATT = 0dB @ 800MHz		32.0			
	3	ATT = 0dB @ 1.8GHz		32.5		15	
Output Third Orde	er Intercept Point	ATT = 0dB @ 2.7GHz		32.8		dBm	
		ATT = 0dB @ 3.5GHz		33.8			
		ATT = 0dB @ 800MHz		1.6			
		ATT = 0dB @ 1.8GHz		2.2		15	
NOISE	Figure	ATT = 0dB @ 2.7GHz		2.6		dB	
		ATT = 0dB @ 3.5GHz		2.9			
DSA Swite	ching time	50% CTRL(LE) to 90% or 10% RF		500	800	ns	
AMP Swit	ching time	50% CTRL(PWRDN) to 90% or 10% RF		150		ns	
Impe	dance			50		Ω	

1. Device performance : measured on a BeRex Evaluation board at 25°C, 50 Ω system, VDD=+3.3V.

2. Gain data has PCB & Connectors insertion loss de-embedded.

3. OIP3 measured with two tones at an output of 3dBm per tone separated by 1MHz.

400MHz - 4000MHz

BVA1621

Table 3. Absolute Maximum Ratings

Parameter	Condition	Min	Тур	Max	Unit
	AMP			5.5	V
Supply Voltage	DSA			5.5	V
	AMP			190	mA
Supply Current	DSA			1000	uA
	AMP Control Pin (PWRDN)	-0.3		5.25	V
Digital input voltage	DSA Control Pin (LE, SERIN, CLK, P/S, D0 - D5, A0, A1, A2)	-0.3		3.6	v
	AMP			20	dBm
Maximum input power	DSA			30	dBm
Storage Temperature	orage Temperature			150	°C
Junction Temperature			150		°C

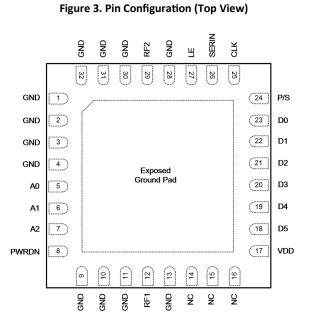
Operation of this device above any of these parameters may result in permanent damage.

Table 4. Recommended Operating Conditions

Parameter	Condition	Min	Тур	Max	Unit
Frequency Range	DSA + AMP	400		4000	MHz
	AMP VDD	3.3	5	5.25	V
Supply Voltage, VDD	DSA VDD	2.7		5.5	V
	AMP ON @ VDD=5V		85		mA
Current, IDD	AMP ON @ VDD=3.3V		48		mA
Current, IDD	AMP OFF			7	mA
	DSA		200		uA
PWRDN Control Voltage	AMP ON	0		0.6	V
PWRDN Control Voltage	AMP OFF	1.17		VDD	V
PWRDN pin Current	AMP OFF		150		uA
DCA Control Visitore	Digital Input High	1.17		3.6	V
DSA Control Voltage	Digital Input Low	-0.3		0.6	V
DSA Control pin Current	Digital Input High			20	uA
Operating Temperature	DSA + AMP	-40		125	$^{\circ}\!$

Specifications are not guaranteed over all recommended operating conditions.

Table 5. Package Thermal Characteristics


Parameter	Symbol	Value	Unit
Junction to Ambient Thermal Resistance	θ _{JA}	TBD	°C/W

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

400MHz - 4000MHz

Table 6. Pin Description

Pin	Pin name	Description
5	A0	Address bit A0 connection
6	A1	Address bit A1 connection
7	A2	Address bit A2 connection
8	PWRDN	Amplifier Power Down (0 = Amp ON, 1 = AMP Power Down)
12	RF1	RF Input (DSA RF Input)
17	VDD	DSA Supply Voltage (2.7V to 5.5V)
18	D5 ¹	DSA Attenuation 16dB Control Word : MSB
19	D4 ¹	DSA Attenuation 8dB Control Word
20	D3 ¹	DSA Attenuation 4dB Control Word
21	D2 ¹	DSA Attenuation 2dB Control Word
22	D1 ¹	DSA Attenuation 1dB Control Word
23	D0 ¹	DSA Attenuation 0.5dB Control Word : LSB
24	P/S	DSA Control Mode Selection (1 = Serial Mode, 0 = Parallel Mode)
25	CLK	SPI Clock Input
26	SERIN	SPI Data Input
27	LE	Latch Enable
29	RF2	RF Output (AMP RF Output and Supply Voltage : 3.3V to 5.25V)
14, 15, 16	NC	Not Connected
Others	GND	Ground, These pins must be connected to ground

1. It is recommended to ground the D0 $^{\sim}$ D5 in serial mode.

BeRex

•website: <u>www.berex.com</u>

•email: sales@berex.com

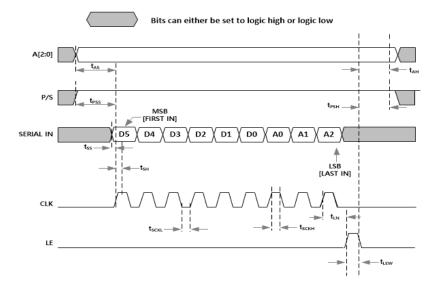
Rev. 1.0

400MHz - 4000MHz

Programming Options

BVA1621 can be programmed using either the parallel or serial interface, which is selectable via P/S pin(Pin24).

Serial mode is selected by pulling it to a voltage logic HIGH and parallel mode is selected by setting P/S to logic LOW.


Serial Control Mode

The serial interface is a 6-bit shift register to shift in the data MSB (D5) first. When serial programming is used, It is recommended all the parallel control input pins (18, 19, 20, 21, 22, 23) are grounded. It is controlled by three CMOS-compatible signals: SERIN, Clock, and Latch Enable (LE).

Table 7. Truth Table for Serial Control Word

	Di	Attenuation State				
D5 (MSB)	D4	D3	D2	D1	D0 (LSB)	[dB]
0	0	0	0	0	0	0
0	0	0	0	0	1	0.5
0	0	0	0	1	0	1
0	0	0	1	0	0	2
0	0	1	0	0	0	4
0	1	0	0	0	0	8
1	0	0	0	0	0	16
1	1	1	1	1	1	31.5

Figure 4. Serial Mode Timing Diagram

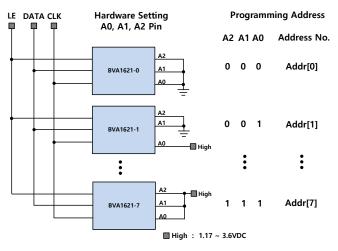
BVA1621 Serial mode is selected by pulling it to logic HIGH. The serial interface is a 9-bit shift register made up of two words. The first 6-bit word is the Attenuation word, which controls the DSA state. The second word is the address word, which uses 3 bits that must match the hard wired A0-A2 programming in order to change the DSA state. If no external connections are made to A0-A2 then internally they will default to 000 due to internal pull down resistors. If these 3 external preset address bits are not matched with the SPI loaded address bits, then the current attenuator state will remain unchanged. This allows up to 8 serial-controlled devices to be used on a single board, which share a common SERIN, CLK and LE.

When serial programming is used, all the parallel control input pins 18, 19, 20, 21, 22, 23 can be left grounded or open.

Table 8. Serial Interface Timing Specifications

Symbol	Parameter	Min	Тур	Max	Unit
f _{CLK}	Serial data clock frequency			10	MHz
t _{AS}	Address setup time	100			ns
t _{AH}	Address hold time	100			ns
t _{PSS}	Parallel/Serial setup time	100			ns
t _{PSH}	Parallel/Serial hold time	100			ns
t _{scк}	Minimum serial period	70			ns
t _{ss}	Serial Data setup time	10			ns
t _{sH}	Serial Data hold time	10			ns
t _{LN}	LE setup time	10			ns
t _{LEW}	Minimum LE pulse width	30			ns

BeRex

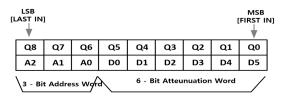

•website: <u>www.berex.com</u>

•email: sales@berex.com

400MHz - 4000MHz

Figure 5. Multi Device Addressing Scheme using SPI

Addre	ss Digital Contr	Address		
A2	A1	A0	Setting	Address No.
0	0	0	000	Addr[0]
0	0	1	001	Addr[1]
0	1	0	010	Addr[2]
0	1	1	011	Addr[3]
1	0	0	100	Addr[4]
1	0	1	101	Addr[5]
1	1	0	110	Addr[6]
1	1	1	111	Addr[7]


Table 9. Truth Table for Address Control Word

Serial Register Map

The BVA1621 can be programmed via the serial control on the rising edge of Latch Enable (LE) which loads the last 6-bits attenuation word and 3-bits address word in the SHIFT Register. Data is clocked in MSB(D5) first.

The shift register must be loaded while LE is kept LOW to prevent changing the attenuation value during data is inputted.

Figure 6. Serial Register Map

The serial register consist of 9-bits as shown in Figure 6. First 6-bits from LSB are Attenuation word, 3-bits after that are Address word. The Attenuation word is DSA attenuation control bit and the Address word is static logical bit determined by A0, A1 and A2 digital inputs. The attenuation word is derived directly from the value of the attenuation state. To find the attenuation word, multiply the value of the state by two because of 0.5dB step up to 31.5dB (total 63 Attenuation state), then convert to binary.

For example, to program attenuation 15.5dB state of Addr[5] BVA1621 :

Attenuation State	Address state					
2 x 15.5 = 31	Digital input of A2, A1, A0 pin = 101					
D0 - D5 : 111110						

Serial DATA Input : 101111110

1 0 1 1 1 1 1 0 A2 A1 A0 D0 D1 D2 D3 D4 D5

Power-UP states Settings

The BVA1621 will always initialize to the maximum attenuation setting (31.5 dB) on power-up for both the Serial and Latched Parallel modes of operation and will remain in this setting until the user latches in the next programming word. In Direct Parallel mode, the DSA can be preset to any state within the 31.5 dB range by pre-setting the Parallel control pins prior to power-up.

•website: www.berex.com

•email: sales@berex.com

7

400MHz - 4000MHz

Programming Options

Parallel Control Mode

The parallel control interface has six digital control input lines (D5 to D0) to set the attenuation value. D5 is the most significant bit (MSB) that selects the 16 dB attenuator stage, and D0 is the least significant bit (LSB) that selects the 0.5 dB attenuator stage.

Direct Parallel Mode

For direct parallel mode, The LE pin must be kept HIGH. The attenuation state is changed by the control voltage inputs (D0 to D5) directly. This mode is ideal for manual control of the attenuator. In this mode the device will immediately react to any voltage changes to the parallel control pins [pins 18, 19, 20, 21, 22, 23]. Use direct parallel mode for the fastest settling time.

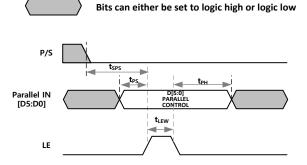
Latched Parallel Mode

The LE pin must be kept LOW when changing the control voltage inputs (D0 to D5) to set the attenuation state. When the desired state is set, LE must be toggled HIGH to transfer the 6-bit data to the by-pass switches of the attenuator array, and then toggled LOW to latch the change into the device until the next desired attenuation change (see Figure 7 and Table 10).

- Set P/S is logic LOW.
- Set LE to logic LOW.
- Adjust pins [18, 19, 20, 21, 22, 23] to the desired attenuation setting. (Note the device will not react to these pins while LE is a logic LOW).
- Pull LE to a logic HIGH. The device will then transition to the attenuation settings reflected by pins D5 D0.
- If LE is pulled to a logic LOW then the attenuator will not change state.

Latched Parallel Mode implies a default state for when the device is first powered up with P/S pin set for logic LOW and LE logic LOW. In this case the default setting is **Maximum attenuation**.

Switching Feature Description

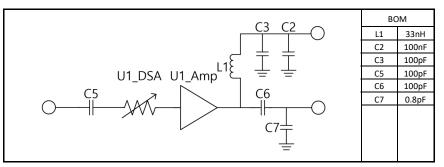

Glitch-Safe Attenuation State Transient

The BVA1621 is the latest product applied *Glitch-Safe* technology with less than 1dB ringing (positive/negative) across the attenuation range when changing attenuation states. This technology protects Amplifiers or ADC during transitions between attenuation states.

Table 10. Truth Table for the Parallel Control Word

D5	D4	D3	D2	D1	D0	P/S	LE	Attenuation State(dB)
0	0	0	0	0	0	0	1	0 (RL)
0	0	0	0	0	1	0	1	0.5
0	0	0	0	1	0	0	1	1.0
0	0	0	1	0	0	0	1	2.0
0	0	1	0	0	0	0	1	4.0
0	1	0	0	0	0	0	1	8.0
1	0	0	0	0	0	0	1	16.0
1	1	1	1	1	1	0	1	31.5

Symbol	Parameter		Тур	Max	Unit
t_{SPS}	Serial to Parallel Mode Setup Time	100			ns
t_{LEW}	Minimum LE pulse width	10			ns
t _{PH}	Data hold time from LE	10			ns
t _{PS}	Data setup time to LE	10			ns


400MHz - 4000MHz

BVA1621

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 0.4 ~ 1.2GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 12

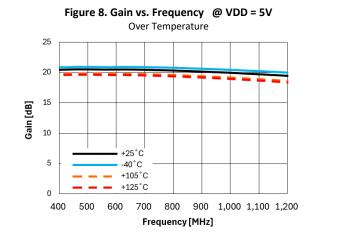
Table 12. 0.4 ~ 1.2GHz RF Application Circuit

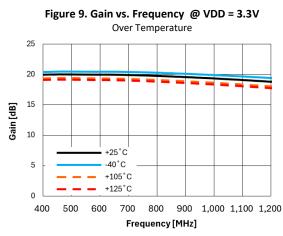
This value can be changed little by little according to the frequency band and bandwidth.

Table 13. Typical RF Performance @ VDD = 5V

Parameter		Unit		
Parameter	500	800	1000	MHz
Gain ¹	20.5	20.3	19.9	dB
\$11	-10.7	-11.2	-10.0	dB
S22	-14.5	-14.1	-11.3	dB
OIP3 ²	37.6	36.5	35.5	dBm
P1dB	22.0	22.0	21.8	dBm
Noise Figure	1.8	1.7	1.8	dB

1. Gain data has PCB & Connectors insertion loss de-embedded


2. OIP3 measured with two tones at an output of 3 dBm per tone separated by 1 MHz.


Table 14. Typical RF Performance @ VDD = 3.3V

Parameter		Unit		
Parameter	500	800	1000	MHz
Gain ¹	20.0	19.8	19.3	dB
\$11	-10.0	-10.2	-9.2	dB
S22	-14.0	-12.9	-10.4	dB
OIP3 ²	32.7	32.0	31.1	dBm
P1dB	18.3	18.3	18.0	dBm
Noise Figure	1.8	1.6	1.7	dB

1. Gain data has PCB & Connectors insertion loss de-embedded

2. OIP3 measured with two tones at an output of 3 dBm per tone separated by 1 MHz.

BeRex

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

400MHz - 4000MHz

BVA1621

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 0.4 ~ 1.2GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 12

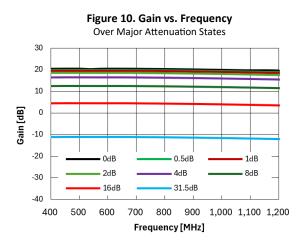
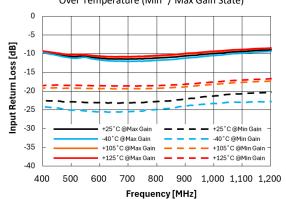



Figure 12. Input Return Loss vs. Frequency Over Temperature (Min¹ / Max Gain State)

1.Min Gain was measured in the state is set with attenuation 31.5dB.

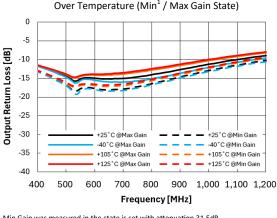


Figure 14. Output Return Loss vs. Frequency

BeRex

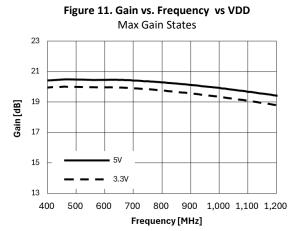


Figure 13. Input Return Loss vs. Frequency

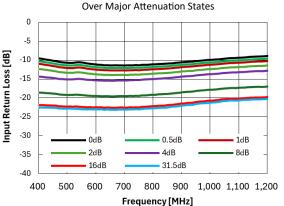
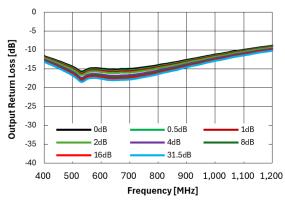



Figure 15. Output Return Loss vs. Frequency **Over Major Attenuation States**

•email: sales@berex.com

Specifications and information are subject to change without notice.

•website: www.berex.com

400MHz - 4000MHz

BVA1621

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 0.4 ~ 1.2GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 12

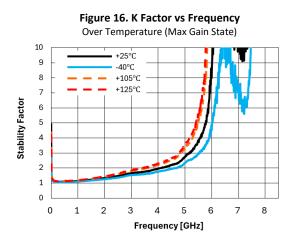
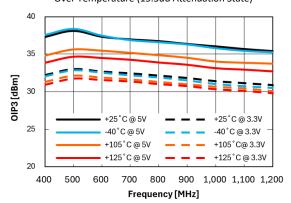
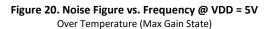
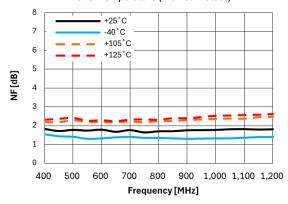





Figure 18. OIP3 vs. Frequency vs. VDD Over Temperature (15.5dB Attenuation State)

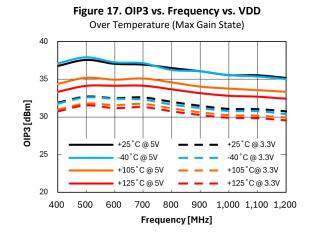
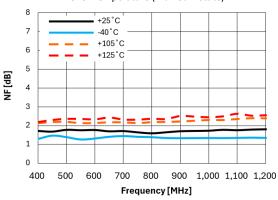



Figure 19. P1dB vs. Frequency vs. VDD

Figure 21. Noise Figure vs. Frequency @ VDD = 3.3V Over Temperature (Max Gain State)

•website: <u>www.berex.com</u>

•email: sales@berex.com

BVA1621

High Linearity wideband DVGA with addressable function

400MHz - 4000MHz

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 0.4 ~ 1.2GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 12

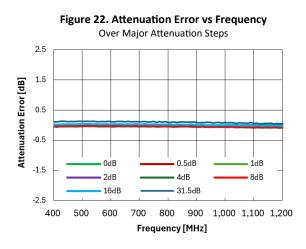
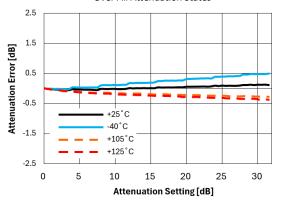
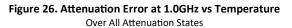




Figure 24. Attenuation Error at 500MHz vs Temperature Over All Attenuation States

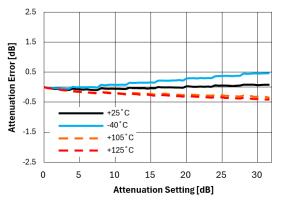


Figure 23. Attenuation Error vs Attenuation Setting Over Major Frequency (Max Gain State)

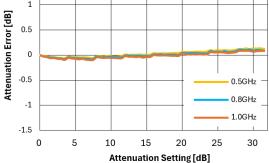
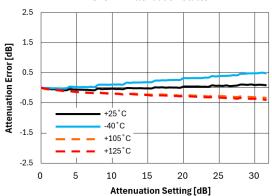
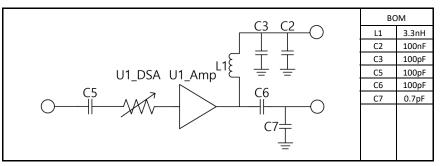



Figure 25. Attenuation Error at 800MHz vs Temperature Over All Attenuation States

•website: <u>www.berex.com</u>


400MHz - 4000MHz

BVA1621

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 1.5 ~ 2.3GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 15

Table 15. 1.5 ~ 2.3GHz RF Application Circuit

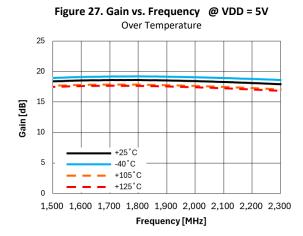

This value can be changed little by little according to the frequency band and bandwidth.

Table 16. Typical RF Performance @ VDD = 5V

Deveneter		Unit		
Parameter	1700	1900	2100	MHz
Gain ¹	18.6	18.6	18.3	dB
\$11	-8.9	-9.6	-9.7	dB
S22	-9.5	-11.0	-10.4	dB
OIP3 ²	36.4	36.2	36.2	dBm
P1dB	21.9	21.9	21.8	dBm
Noise Figure	2.2	2.3	2.3	dB

1. Gain data has PCB & Connectors insertion loss de-embedded

2. OIP3 measured with two tones at an output of 3 dBm per tone separated by 1 MHz.

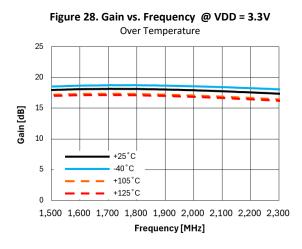


Table 17. Typical RF Performance @ VDD = 3.3V

Parameter		Unit		
Parameter	1700	1900	2100	MHz
Gain ¹	18.1	18.0	17.7	dB
\$11	-8.5	-9.0	-9.1	dB
S22	-9.6	-10.8	-10.1	dB
OIP3 ²	32.6	32.4	32.2	dBm
P1dB	18.4	18.5	18.4	dBm
Noise Figure	2.1	2.2	2.3	dB

1. Gain data has PCB & Connectors insertion loss de-embedded

2. OIP3 measured with two tones at an output of 3 dBm per tone separated by 1 MHz.

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

400MHz - 4000MHz

BVA1621

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 1.5 ~ 2.3GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 15

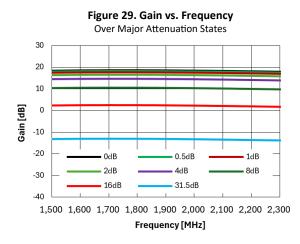
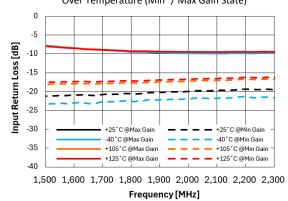
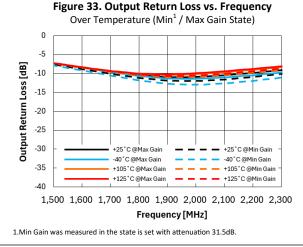




Figure 31. Input Return Loss vs. Frequency Over Temperature (Min¹ / Max Gain State)

1.Min Gain was measured in the state is set with attenuation 31.5dB.

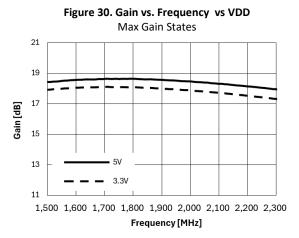
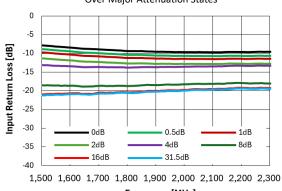
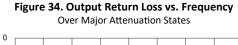
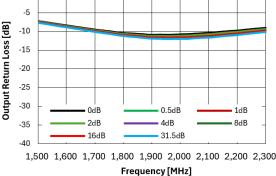





Figure 32. Input Return Loss vs. Frequency Over Major Attenuation States

Frequency [MHz]

BeRex

•website: <u>www.berex.com</u>

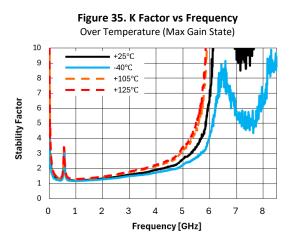
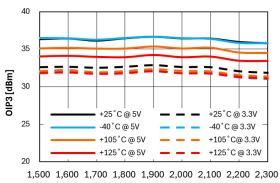
Specifications and information are subject to change without notice.

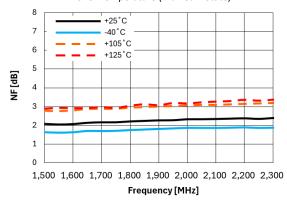
400MHz - 4000MHz

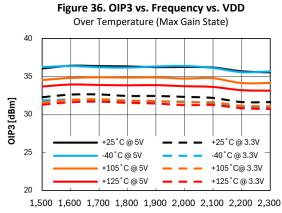
BVA1621

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 1.5 ~ 2.3GHz)

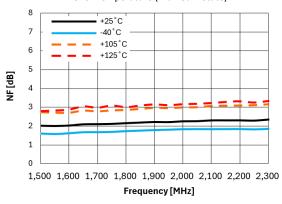
Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 15




Figure 37. OIP3 vs. Frequency vs. VDD Over Temperature (15.5dB Attenuation State)

Frequency [MHz]



Frequency [MHz]

Figure 38. P1dB vs. Frequency vs. VDD Over Temperature (Max Gain State) 25 20 = _ P1dB [dBm] 15 +25°C @ 5V +25°C @ 3.3V 10 -40°C@5V -40°C @ 3.3V +105°C@5V +105°C@ 3.3V +125°C @ 5V +125°C @ 3.3V 5 1,500 1,600 1,700 1,800 1,900 2,000 2,100 2,200 2,300

Frequency [MHz]

Figure 40. Noise Figure vs. Frequency @ VDD = 3.3V Over Temperature (Max Gain State)

•website: <u>www.berex.com</u>

Specifications and information are subject to change without notice.

BVA1621

High Linearity wideband DVGA with addressable function

400MHz - 4000MHz

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 1.5 ~ 2.3GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 15

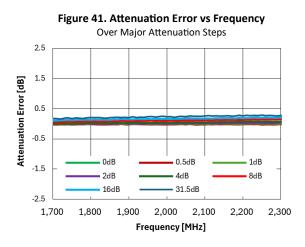
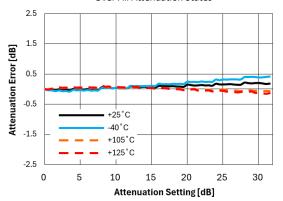
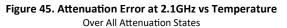




Figure 43. Attenuation Error at 1.7GHz vs Temperature Over All Attenuation States

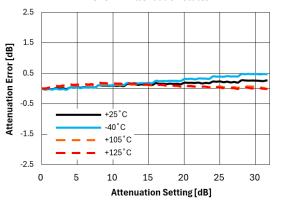


Figure 42. Attenuation Error vs Attenuation Setting Over Major Frequency (Max Gain State)

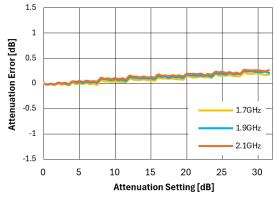
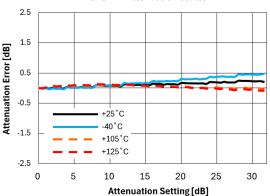
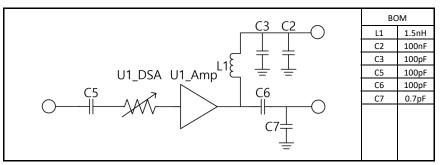



Figure 44. Attenuation Error at 1.9GHz vs Temperature Over All Attenuation States

•website: <u>www.berex.com</u>

Rev. 1.0


400MHz - 4000MHz

BVA1621

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 2.3 ~ 3GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 18

Table 18. 2.3 ~ 3GHz RF Application Circuit

This value can be changed little by little according to the frequency band and bandwidth.

Table 19. Typical RF Performance @ VDD = 5V

Deveneter		Unit		
Parameter	2300	2500	2700	MHz
Gain ¹	17.6	17.7	17.5	dB
\$11	-8.6	-9.4	-10.0	dB
S22	-8.3	-9.9	-10.5	dB
OIP3 ²	36.0	36.5	36.4	dBm
P1dB	21.1	21.7	21.6	dBm
Noise Figure	2.5	2.5	2.6	dB

1. Gain data has PCB & Connectors insertion loss de-embedded

2. OIP3 measured with two tones at an output of 3 dBm per tone separated by 1 MHz.

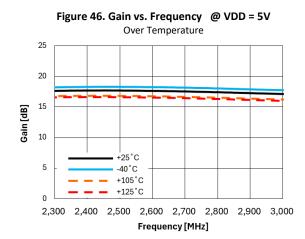
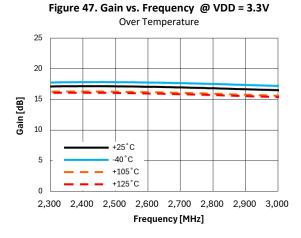



Table 20. Typical RF Performance @ VDD = 3.3V

Parameter		Unit		
Parameter	2300	2500	2700	MHz
Gain ¹	17.1	17.1	16.9	dB
\$11	-8.2	-8.9	-9.4	dB
S22	-8.6	-10.1	-10.5	dB
OIP3 ²	32.5	32.8	32.8	dBm
P1dB	17.7	18.2	18.1	dBm
Noise Figure	2.4	2.5	2.6	dB

1. Gain data has PCB & Connectors insertion loss de-embedded

2. OIP3 measured with two tones at an output of 3 dBm per tone separated by 1 MHz.

•website: <u>www.berex.com</u>

•email: sales@berex.com

400MHz - 4000MHz

BVA1621

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 2.3 ~ 3GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 18

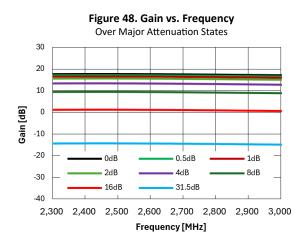
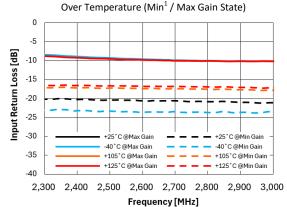
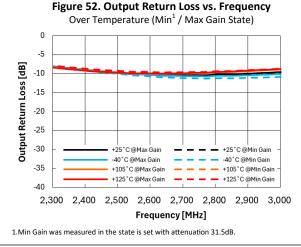




Figure 50. Input Return Loss vs. Frequency

1.Min Gain was measured in the state is set with attenuation 31.5dB.

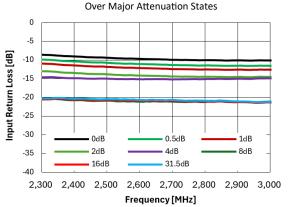
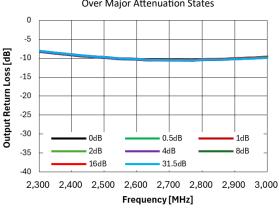




Figure 51. Input Return Loss vs. Frequency

Figure 53. Output Return Loss vs. Frequency Over Major Attenuation States

BeRex

•website: <u>www.berex.com</u>

•email: sales@berex.com

Specifications and information are subject to change without notice.

400MHz - 4000MHz

BVA1621

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 2.3 ~ 3GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 18

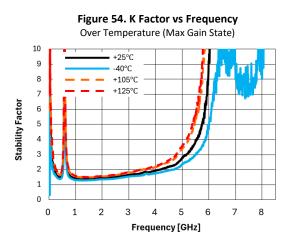
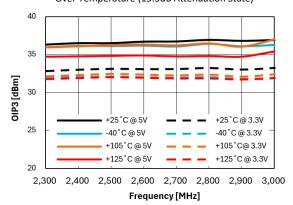
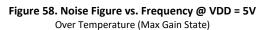
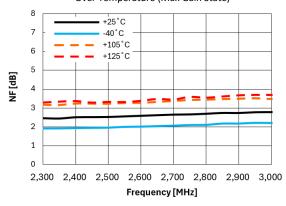





Figure 56. OIP3 vs. Frequency vs. VDD Over Temperature (15.5dB Attenuation State)

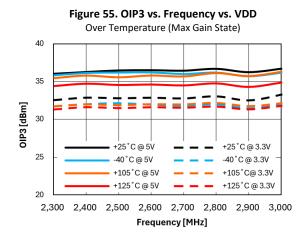


Figure 57. P1dB vs. Frequency vs. VDD

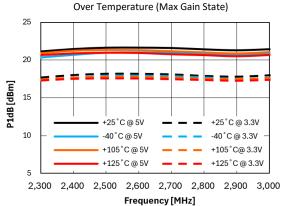
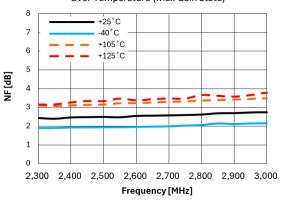



Figure 59. Noise Figure vs. Frequency @ VDD = 3.3V Over Temperature (Max Gain State)

•website: <u>www.berex.com</u>

Specifications and information are subject to change without notice.

BVA1621

High Linearity wideband DVGA with addressable function

400MHz - 4000MHz

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 2.3 ~ 3GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 18

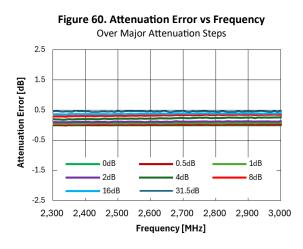
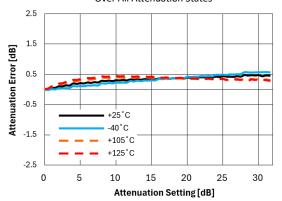
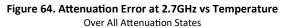
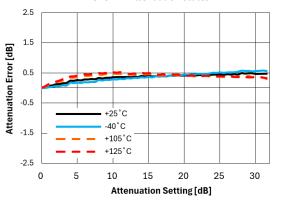
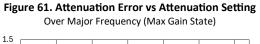






Figure 62. Attenuation Error at 2.3GHz vs Temperature Over All Attenuation States

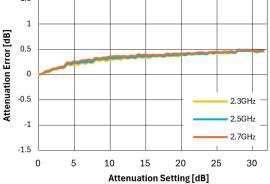
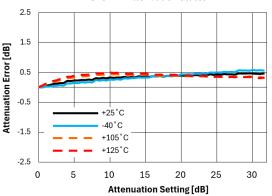
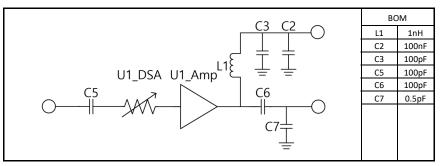



Figure 63. Attenuation Error at 2.5GHz vs Temperature Over All Attenuation States

•website: <u>www.berex.com</u>

BeRex


400MHz - 4000MHz

BVA1621

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 3.3 ~ 4GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 21

Table 21. 3.3 ~ 4GHz RF Application Circuit

This value can be changed little by little according to the frequency band and bandwidth.

Table 22. Typical RF Performance @ VDD = 5V

Parameter		Unit		
Parameter	3300	3600	3800	MHz
Gain ¹	17.0	16.8	16.7	dB
\$11	-12.5	-12.7	-12.8	dB
S22	-11.6	-10.4	-9.9	dB
OIP3 ²	36.6	36.5	36.7	dBm
P1dB	21.0	21.1	20.9	dBm
Noise Figure	2.8	2.9	3.1	dB

1. Gain data has PCB & Connectors insertion loss de-embedded

2. OIP3 measured with two tones at an output of 3 dBm per tone separated by 1 MHz.

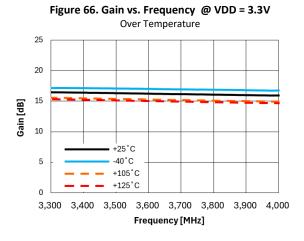


Table 23. Typical RF Performance @ VDD = 3.3V

Parameter		Unit		
Parameter	3300	3600	3800	MHz
Gain ¹	16.4	16.2	16.0	dB
\$11	-11.6	-11.8	-11.9	dB
S22	-11.2	-10.0	-9.4	dB
OIP3 ²	33.7	32.8	32.6	dBm
P1dB	17.6	17.7	17.5	dBm
Noise Figure	2.8	3.0	3.0	dB

1. Gain data has PCB & Connectors insertion loss de-embedded

2. OIP3 measured with two tones at an output of 3 dBm per tone separated by 1 MHz.

•website: <u>www.berex.com</u>

Specifications and information are subject to change without notice.

400MHz - 4000MHz

BVA1621

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 3.3 ~ 4GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 21

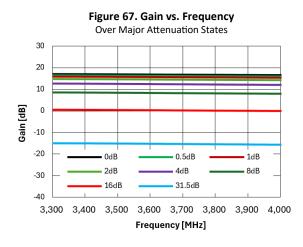
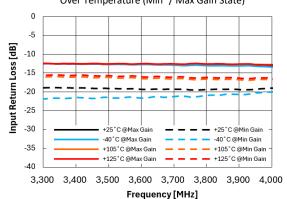




Figure 69. Input Return Loss vs. Frequency Over Temperature (Min¹ / Max Gain State)

1.Min Gain was measured in the state is set with attenuation 31.5dB.

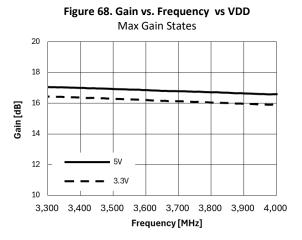
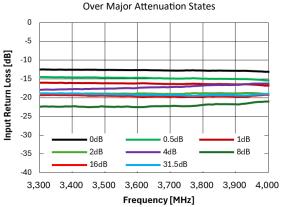
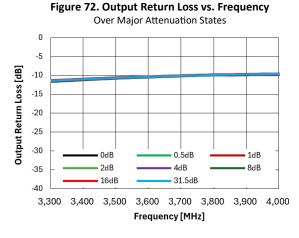




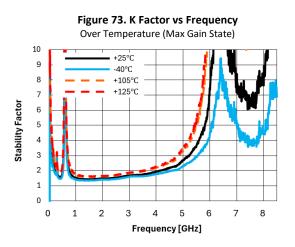
Figure 70. Input Return Loss vs. Frequency

BeRex

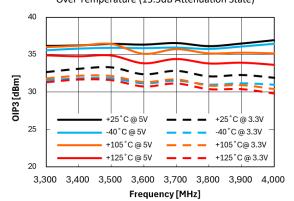
•website: <u>www.berex.com</u>

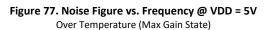
•email: <u>sales@berex.com</u>

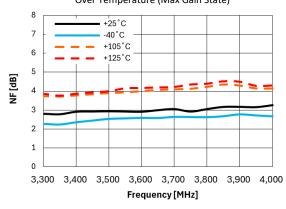
Specifications and information are subject to change without notice.


BVA1621

High Linearity wideband DVGA with addressable function


400MHz - 4000MHz


Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 3.3 ~ 4GHz)


Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 21

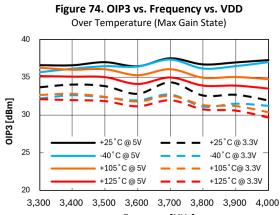


Figure 75. OIP3 vs. Frequency vs. VDD Over Temperature (15.5dB Attenuation State)

Frequency [MHz]

Figure 76. P1dB vs. Frequency vs. VDD

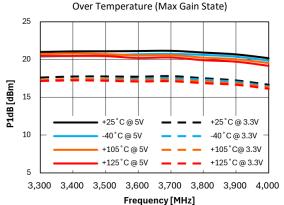
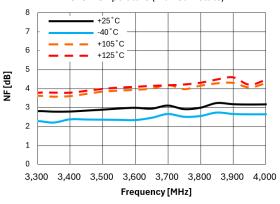



Figure 78. Noise Figure vs. Frequency @ VDD = 3.3V Over Temperature (Max Gain State)

•website: <u>www.berex.com</u>

Specifications and information are subject to change without notice.

BVA1621

High Linearity wideband DVGA with addressable function

400MHz - 4000MHz

Typical RF Performance Plot - BVA1621 EVK - PCB (Application Circuit : 3.3 ~ 4GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 21

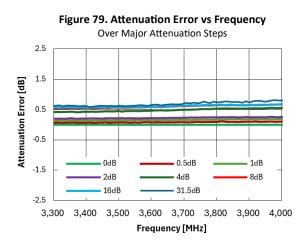
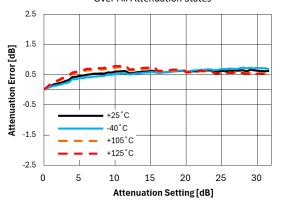
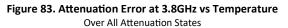
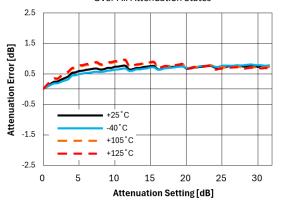
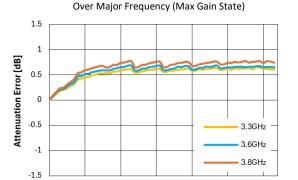






Figure 81. Attenuation Error at 3.3GHz vs Temperature Over All Attenuation States

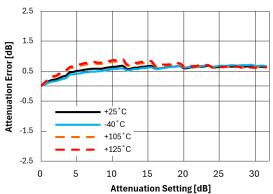
0

5

10

Figure 80. Attenuation Error vs Attenuation Setting

Figure 82. Attenuation Error at 3.6GHz vs Temperature Over All Attenuation States

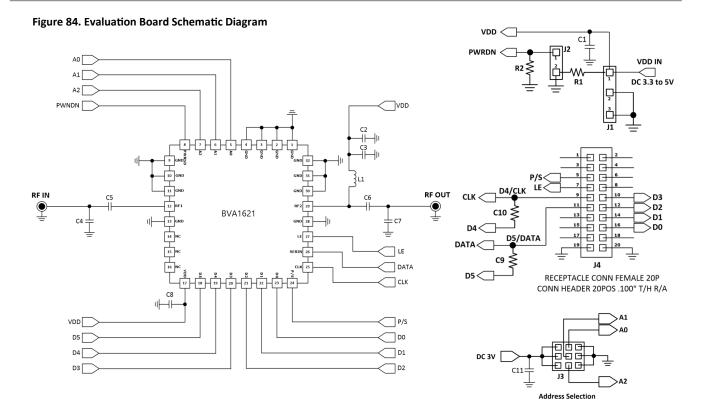

15

Attenuation Setting [dB]

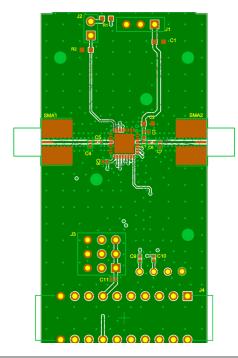
20

25

30



•website: <u>www.berex.com</u>



400MHz - 4000MHz

BVA1621

Figure 85. BVA1621 Evaluation Board

Table 24. Application Circuit

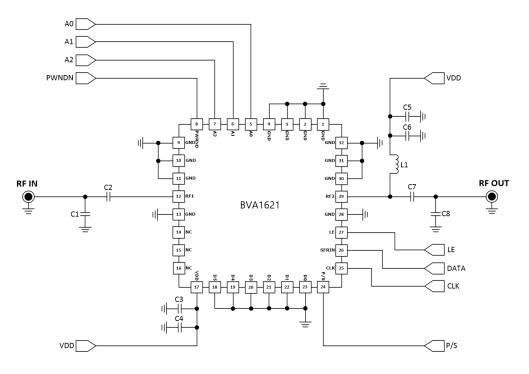
Application Circuits by Frequency Range				
Ref Des	0.4 - 1.2GHz	1.5 - 2.3GHz	2.3 - 3GHz	3.3 - 4GHz
L1	33nH	3.3nH	1.5nH	1nH
C7	0.8pF	0.7pF	0.7pF	0.5pF

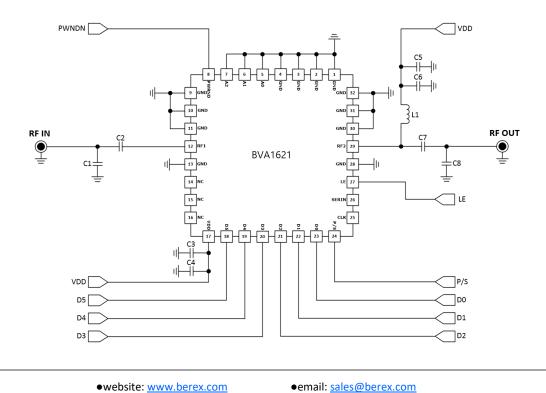
Table 25. Bill of Material - Evaluation Board

No.	Ref Des	Qty	Part Number	REMARK
1	L1	1	IND 0402	Refer to Table 24
2	C1	1	CAP 0608 1uF	
3	C2	1	CAP 0608 100nF	
4	C3, C5, C6	3	CAP 0603 100pF	
5	C7	1	CAP 0201	Refer to Table 24
6	C8, C11	2	CAP 0402 100nF	
7	C9, C10	2	RES 0402 1kohm	
8	R1	1	RES 0608 1kohm	
9	R2	1	RES 0608 30kohm	
10	U1	1	BVA1621	SIP LGA 5x5 32Lead
11	SMA1, SMA2	2	SMA END LAUNCH	RF SMA Connector
12	J1	1	3pin Header	2.54mm, male
13	J2	1	2pin Header	2.54mm, male
14	J3	1	3pin x 3 Header array	2.54mm, male
15	J4	1	Receptacle connector 20pin	2.54mm, female
16	C4	1	NC	Not Connected

BeRex

•website: <u>www.berex.com</u>


•email: sales@berex.com


400MHz - 4000MHz

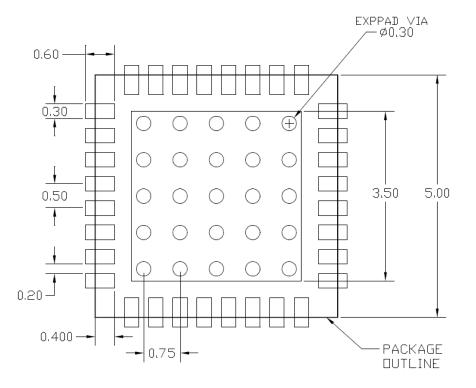
BVA1621

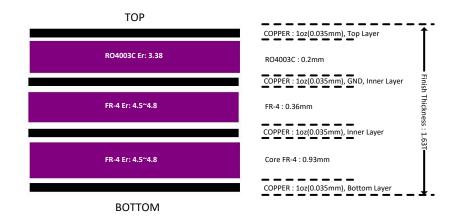
Figure 86. Recommended Application Circuits in Serial Mode

Figure 87. Recommended Application Circuits in Parallel Mode

BeRex

BeRex is a trademark of BeRex. All other trademarks are the property of their respective owners. © 2025 BeRex


26

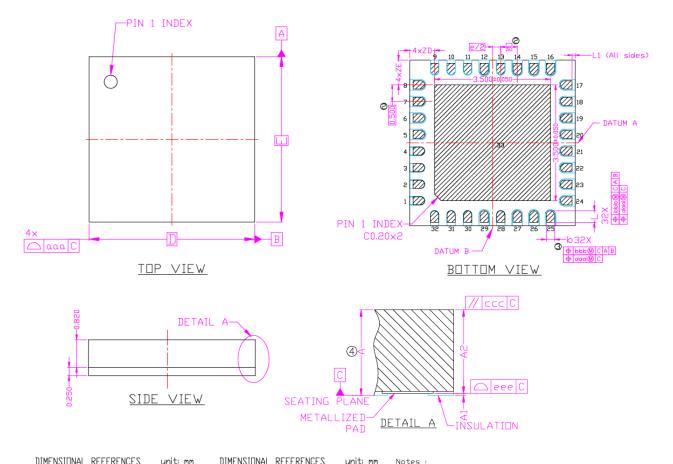

400MHz - 4000MHz

BVA1621

Figure 88. Suggested PCB Land Pattern and PAD Layout

Figure 89. Evaluation Board PCB Layer Information

•website: <u>www.berex.com</u>


•email: sales@berex.com

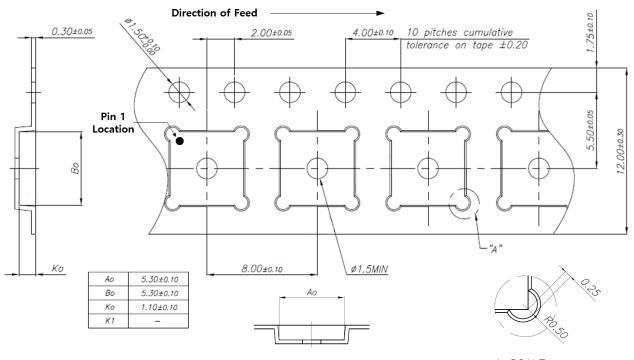
400MHz - 4000MHz

BVA1621

Figure 90. Package Outline Dimension

DIMENSIONA	l refere	unit: mm		
REF.	Min.	Nom.	Max.	
A	1.02	1.07	1.12	
A1	-	-	0.03	
A2	-	-	1.09	
b	0.20	0.25	0.30	
L	0.30	0.35	0.40	
D	4.90	5.00	5.10	
E	4.90 5.00		5.10	
ZD	0.75 BSC			
ZE	0.75 BSC			
e	0.50 BSC			
L1		0.10 REF	-	

DIMENSIONA	L REFERENCES UNIT MM
REF.	TOLERANCE OF FORM
	AND POSITION
۵۵۵	0.10
bbb	0.10
CCC	0.10
ddd	0.08
eee	0.08


- ① ALL DIMENSION ARE IN MILLIMETER.
- 'e' REPRESENTS THE BASIC TERMINAL PITCH. SPECIFIES THE TRUE GEOMETRIC POSITION OF THE TERMINAL AXIS.
- ③ DIMENSION 'b' APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.00mm AND 0.25mm FROM TERMINAL TIP.
- ④ DIMENSION 'A' INCLUDES PACKAGE WARPAGE.
- EXPOSED METALLIZED PADS ARE CU PADS WITH SURFACE FINISH PROTECTION.
- ⑥ PACKAGE DIMENSIONS TAKE REFERENCE TO JEDEC MO-208 REV.C.

400MHz - 4000MHz

BVA1621

Figure 91. Tape & Reel

Notes:

- 1. 10 sprocket hole pitch cumulative tolerance 0.2/-0.2
- 2. Camber not to exceed 1mm in 250mm.
- 3. Material : Black conductive Polystyrene.
- 4. Ao and Bo measured on a plane 0.3mm above the bottom of the pocket
- 5. Ko measured from a plane on the inside bottom of the pocket to the top surface of the carrier.
- 6. Pocket center position relative to sprocket hole center measured as true position center of pocket, not pocket hole center.
- 7. Pocket center and pocket hole center must be same position.

Packaging information:	
Tape Width	12mm
Reel Size	7"
Device Cavity Pitch	8mm
Devices Per Reel	1K

Figure 92. Package Marking

BVA1621 YYWWXX

Marking information:	
BVA1621	Device Name
YY	Year
ww	Work Week
ХХ	Wafer Run Number
	BVA1621 YY WW

•website: <u>www.berex.com</u>

•email: sales@berex.com

BVA1621

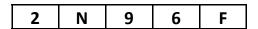
Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating:	Class 1C
Value:	±1000V
Test:	Human Body Model (HBM)
Standard:	JEDEC Standard JS-001-2017
ESD Rating:	Class C3
Value:	±1000V
Test:	Charged Device Model (CDM)
Standard:	JEDEC Standard JS-002-2018
MSL Rating:	Level 3 at +260°C convection reflow
Standard:	JEDEC Standard J-STD-020


Proper ESD procedures should be followed when handling this device.

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

