

500MHz - 8000MHz

Device Features

- Integrate DSA to AMP Functionality
- 500-8000MHz Broadband Performance
- Wide VDD Range
 AMP: 4.0V to 5.25V
 DSA: 2.7V to 5.5V
- Low current: 110mA @ 5V, 55mA @ 4V
- High Gain
 20.4dB @ 1.9GHz, 19.7dB @ 3.5GHz (VDD=5V)
 19.5dB @ 1.9GHz, 19.1dB @ 3.5GHz (VDD=4V)
- High OP1dB
 20.8dBm @ 1.9GHz, 20.7dBm @ 3.5GHz (VDD=5V)
 19.2dBm @ 1.9GHz, 19.1dBm @ 3.5GHz (VDD=4V)
- High OIP3
 36.0dBm @ 1.9GHz, 34.9dBm @ 3.5GHz (VDD=5V)
 32.5dBm @ 1.9GHz, 32.9dBm @ 3.5GHz (VDD=4V)
- Noise Figure at max gain setting
 2.6dB @ 1.9GHz, 3.2dB @ 3.5GHz
- Attenuation Range: Up to 31.75dB / 0.25dB Step
- Safe attenuation state transitions
- Excellent attenuation accuracy ±(0.25 + 3% x ATT) @ 1.9 GHz ±(0.25 + 5% x ATT) @ 3.5 GHz
- Programming modes
 Serial mode only to minimize Control line
- 3bit Addressable function LE/DATA/CLK can be shared up to 8EA Chips
- Lead-free/RoHS2-compliant 24-lead 4mm x 4mm x 0.9mm QFN
 SMT package

Product Description

The BVA1762 is a high performance, digitally controlled variable gain amplifier (DVGA) operating from 500MHz to 8GHz.

The BVA1762 integrates a high performance digital step attenuator (DSA) and a high linearity, broadband gain block amplifier operating voltage 4.0V to 5.25V DC within enable control using the small package (4x4mm QFN package).

Both DSA and gain block amplifier in BVA1762 are internally matched to 50 Ohms and It is easy to use with minimum external matching components required.

The BVA1762 can control 7bit attenuation to 0.25dB step up to 31.75dB and initialize to the maximum attenuation setting on power-up until next programming word is inputted.

In addition, Internal DSA has a 3-bit addressable function, so it can share up to 8 DSA's Latch Enable(LE), DATA and CLOCK(CLK) pin. This has the advantage of reducing the number of IO pins when using multiple DSA or DVGA chip with addressable function.

The BVA1762 is targeted for use in wireless infrastructure, point-topoint, or can be used for any general purpose wireless application.

24-lead 4mm x 4mm x 0.9mm QFN

Figure 1. Package Type

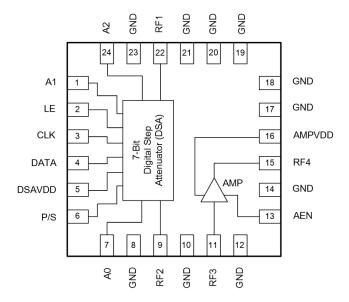


Figure 2. Functional Block Diagram

Application

- 5G/4G/3G Wireless infrastructure and other high performance RF application
- Microwave and Satellite Radio
- General purpose Wireless

500MHz - 8000MHz

Table 1. Electrical Specifications @ VDD = 5V

Parame	ter	Condition	Min	Тур	Max	Unit	
Operational Frequency R	ange		500		8000	MHz	
Gain ²		ATT = 0dB @ 3500MHz		19.7		dB	
Attenuation Control rang	Attenuation Control range			0 - 31.75		dB	
Attenuation Step	_			0.25		dB	
	0.5GHz - 1GHz				\pm (0.25 + 2% of ATT setting)		
	1GHz - 2GHz				\pm (0.25 + 3% of ATT setting)		
	2GHz - 3GHz				\pm (0.25 + 3% of ATT setting)		
Attenuation Accuracy	3GHz - 4GHz	Any bit or bit combination			\pm (0.25 + 5% of ATT setting)	dB	
	4GHz - 6GHz				\pm (0.25 + 5% of ATT setting)		
	6GHz - 8GHz				\pm (0.5 + 5% of ATT setting)		
	0.5GHz - 2GHz		-11	-15			
Innut Datum Ioo	2GHz - 4GHz	ATT - Odp	-15	-16		-ID	
Input Return loss	4GHz - 6GHz	ATT = 0dB	-9	-11		dB	
	6GHz - 8GHz		-8	-10			
	0.5GHz - 2GHz		-9	-16			
Output Return loss	2GHz - 4GHz	ATT = 0dB	-10	-16		dB	
output Neturn 1033	4GHz - 6GHz	ATT = GUB	-15	-18		ab	
	6GHz - 8GHz		-9	-18			
Output Power for 1dB Co	mpression	ATT = 0dB @ 3500MHz		20.7		dBm	
Output Third Order Inter	cept Point ³	ATT = 0dB @ 3500MHz		34.9		dBm	
Noise Figure		ATT = 0dB @ 3500MHz		3.2		dB	
DSA Switching time		50% CTRL to 90% or 10% RF		500	800	ns	
AMP Switching time		50% CTRL to 90% or 10% RF		150		ns	
Maximum Spurious level		Measured @ RF1, RF2 ports		< -145		dBm	
Impedance				50		Ω	

 $^{1. \} Device \ performance _measured \ on \ a \ BeRex \ Evaluation \ board \ at \ 25^{\circ}C, 50 \ \Omega \ system, VDD=+5.0V, \ measure \ on \ Evaluation \ Board \ (DSA \ to \ AMP)$

^{2.} Gain data has PCB & Connectors insertion loss de-embedded

^{3.} OIP3 _ measured with two tones at an output of 3dBm per tone separated by 1MHz.

500MHz - 8000MHz

Table 2. Electrical Specifications ¹ @ VDD = 4V

Parame	eter	Condition	Min	Тур	Max	Unit	
Operational Frequency	Range		500		8000	MHz	
Gain ²		ATT = 0dB @ 3500MHz		19.1		dB	
Attenuation Control ra	nge	0.25dB Step		0 - 31.75		dB	
Attenuation Step				0.25		dB	
	0.5GHz - 1GHz				\pm (0.25 + 2% of ATT setting)		
	1GHz - 2GHz				\pm (0.25 + 3% of ATT setting)		
Attenuation Accuracy	2GHz - 3GHz	Any bit or bit combination			\pm (0.25 + 3% of ATT setting)	dB	
Attenuation Accuracy	3GHz - 4GHz	Any bit of bit combination			\pm (0.25 + 5% of ATT setting)	ив	
	4GHz - 6GHz				\pm (0.25 + 5% of ATT setting)		
	6GHz - 8GHz				\pm (0.5 + 5% of ATT setting)		
	0.5GHz - 2GHz		-11	-15			
Input Return loss	2GHz - 4GHz	ATT = 0dB	-15	-16		dB	
input neturi ioss	4GHz - 6GHz	ATT - OUB	-9	-11		ив	
	6GHz - 8GHz		-8	-10			
	0.5GHz - 2GHz		-9	-16			
Output Return loss	2GHz - 4GHz	ATT = 0dB	-10	-16		dB	
Culput Hotalii 1000	4GHz - 6GHz		-15	-18			
	6GHz - 8GHz		-9	-18			
Output Power for 1dB	Compression	ATT = 0dB @ 3500MHz		19.1		dBm	
Output Third Order Int	ercept Point ³	ATT = 0dB @ 3500MHz		32.9		dBm	
Noise Figure		ATT = 0dB @ 3500MHz		3.2		dB	
DSA Switching time		50% CTRL to 90% or 10% RF		500	800	ns	
AMP Switching time		50% CTRL to 90% or 10% RF		150		ns	
Maximum Spurious lev	rel	Measured @ RF1, RF2 ports		< -145		dBm	
Impedance				50		Ω	

 $^{1. \} Device \ performance _measured \ on \ a \ BeRex \ Evaluation \ board \ at \ 25^{\circ}C, 50 \ \Omega \ system, VDD=+5.0V, \ measure \ on \ Evaluation \ Board \ (DSA \ to \ AMP)$

^{2.} Gain data has PCB & Connectors insertion loss de-embedded

^{3.} OIP3 _ measured with two tones at an output of 3dBm per tone separated by 1MHz.

500MHz - 8000MHz

Table 3. Typical RF Performance (VDD = 5.0V) ¹

				Freque	ency				Unit
Parameter	900³	1800 ⁴	2140 ⁵	2650 ⁵	3500 ⁵	4650 ⁶	5800 ⁷	7200 ⁷	MHz
Gain ⁸	20.7	20.4	20.3	20.1	19.7	19.1	18.0	18.2	dB
S11	-18.2	-15.8	-16.2	-16.7	-18.7	-10.7	-9.4	-9.6	dB
S22	-16.2	-19.8	-29.8	-22.3	-11.5	-15.6	-25.8	-20.1	dB
OIP3 ⁹	37.5	36.1	35.7	35.3	34.9	34.6	33.9	31.0	dBm
P1dB	20.1	20.8	20.9	20.8	20.7	20.4	18.8	16.5	dBm
Noise Figure	2.5	2.6	2.7	2.9	3.2	4.0	4.0	5.2	dB

Table 4. Typical RF Performance (VDD = 4.0V) ²

Davis and an				Freque	ency				Unit
Parameter	900³	1800 ⁴	2140 ⁵	2650⁵	3500 ⁵	4650 ⁶	5800 ⁷	7200 ⁷	MHz
Gain ⁸	20.0	19.6	19.4	19.3	19.1	18.2	16.9	16.9	dB
S11	-15.3	-13.2	-13.5	-14.2	-21.7	-9.3	-8.3	-8.3	dB
S22	-22.3	-21.3	-26.4	-21.8	-13.5	-17.5	-18.3	-15.0	dB
OIP3 ⁹	33.6	32.6	32.0	32.1	32.9	32.4	31.7	28.0	dBm
P1dB	18.3	19.2	19.2	19.0	19.1	18.9	17.1	14.9	dBm
Noise Figure	2.5	2.6	2.7	2.8	3.2	4.1	4.1	5.3	dB

^{1.} Device performance $_$ measured on a BeRex evaluation board at 25°C, VDD=+5.0V, 50 Ω system. (DSA to AMP)

^{2.} Device performance _ measured on a BeRex evaluation board at 25°C, VDD=+4.0V, 50 Ω system. (DSA to AMP) 3. 900MHz measured with application circuit refer to table 11.

^{4. 1800}MHz, 2140MHz, 2650MHz measured with application circuit refer to table 14.

^{5. 3500}MHz measured with application circuit refer to table 17. 6. 4650MHz measured with application circuit refer to table 20.

^{7. 5800}MHz, 7000MHz measured with application circuit refer to table 23.

^{8.} Gain data has PCB & Connectors insertion loss de-embedded.

^{9.} OIP3 measured with two tones at an output of 3dBm per tone separated by 1MHz $\,$

500MHz - 8000MHz

Table 5. Absolute Maximum Ratings

Parameter	Condition	Min	Тур	Max	Unit
Constantino	AMP			5.5	V
Supply Voltage	DSA			5.5	V
	AMP			180	mA
Supply Current	DSA			1000	uA
	AMP Control Pin (AEN)	-0.3		5.25	V
Digital input voltage	DSA Control Pin (LE, DATA, CLK, P/S, A0, A1, A2)	-0.3		3.6	V
	AMP			15	dBm
Maximum input power	DSA			30	dBm
Storage Temperature		-55		150	℃
Junction Temperature			150		℃

Operation of this device above any of these parameters may result in permanent damage.

Table 6. Recommended Operating Conditions

Parameter	Condition	Min	Тур	Max	Unit
Frequency Range	AMP + DSA	500		8000	MHz
Constructions VDD	AMP VDD	4	5	5.25	V
Supply Voltage, VDD	DSA VDD	2.7		5.5	V
	AMP ON @ VDD=5V	90	110	130	mA
Course IDD	AMP ON @ VDD=4V	45	55	65	mA
Current, IDD	AMP OFF			7	mA
	DSA	100	200	300	uA
AMP Control Voltage	AMP ON	0		0.6	V
[AEN]	AMP OFF	1.17		VDD	V
AEN pin Current	AMP OFF		150		uA
DCA Control Walters	Digital Input High	1.17		3.6	V
DSA Control Voltage	Digital Input Low	-0.3		0.6	V
DSA Control pin Current	Digital Input High			20	uA
Operating Temperature	AMP + DSA	-40		105	$^{\circ}$

Specifications are not guaranteed over all recommended operating conditions.

500MHz - 8000MHz

A2 GND GND GND GND 22 22 23 61 17 Α1 18 GND 2 LE GND -3-l CLK 16 AMPVDD Exposed Pad DATA 15 RF4 DSAVDD 5-GND 6 P/S AEN

Figure 3. Pin Configuration (Top View)

Table 7. Pin Description

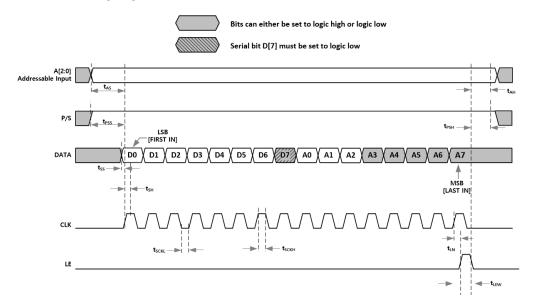
Pin	Pin name	Description
1	A1	Address bit A1 connection.
2	LE	Latch Enable input
3	CLK	Serial interface clock input
4	DATA	Serial interface data input
5	DSAVDD	DSA Power Supply input
6	P/S	Serial Mode Select. This pin have to be set to HIGH.
7	A0	Address bit A0 connection.
9	RF2 ¹	DSA output port (Attenuator RF Output) This pin should be connected to RF3(Pin 11) with DC blocking capacitor.
11	RF3	Amplifier RF Input This pin should be connected to RF2(Pin 9) with DC blocking capacitor.
13	AEN	Amplifier Enable input. Amplifier is enabled when this pin is set to Low .
15	RF4	Amplifier RF Output This pin is a final RF output port. (DSA + Amp structure)
22	RF1 ¹	DSA input port (Attenuator RF Input) This pin is a main RF input port. (DSA + Amp structure)
24	A2	Address bit A2 connection.
8, 10, 12, 14, 17, 18, 19, 20, 21, 23	GND	Ground, These pins must be connected to ground
16	AMPVDD	Amplifier power supply input

Note: 1. The RF pins do not require DC blocking capacitors for proper operation if the OV DC requirement is met.

500MHz - 8000MHz

Programming Options

The BDA1762 is programmed to operate only in serial mode. It operates in serial mode when the P/S pin is High, and when P/S pin is low, the internal DSA is fixed as Max attenuation(31.75dB), so the P/S pin must be set to High to use the serial mode.


Serial Control Mode

The serial interface is a 7-bit shift register to shift in the data LSB (D0) first. It is controlled by three CMOS-compatible signals: DATA, CLK, and Latch Enable (LE).

Table 8. Truth Table for Serial Control Word

		Dig	gital Co	ntrol In	put			Attenuation
D7	D6	D5	D4	D3	D2	D1	D0	state
(MSB)							(LSB)	(dB)
LOW	LOW	LOW	LOW	LOW	LOW	LOW	LOW	0
LOW	LOW	LOW	LOW	LOW	LOW	LOW	HIGH	0.25
LOW	LOW	LOW	LOW	LOW	LOW	HIGH	LOW	0.5
LOW	LOW	LOW	LOW	LOW	HIGH	LOW	LOW	1.0
LOW	LOW	LOW	LOW	HIGH	LOW	LOW	LOW	2.0
LOW	LOW	LOW	HIGH	LOW	LOW	LOW	LOW	4.0
LOW	LOW	HIGH	LOW	LOW	LOW	LOW	LOW	8.0
LOW	HIGH	LOW	LOW	LOW	LOW	LOW	LOW	16.0
LOW	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	31.75

Figure 4. Serial Mode Timing Diagram

The serial interface is a 16-bit shift register made up of two words. The first 8-bit word is the Attenuation word, which controls the DSA state.

The second word is the address word, which uses only 3 of 8-bits that must match the hard wired A0 – A2 programming in order to change the DSA state. If no external connections are made to A0 – A2 then internally they will default to 000 due to internal pull down resistors.

If these 3 external preset address bits are not matched with the SPI loaded address bits then the current attenuator state will remain unchanged.

This allows up to 8 serial-controlled devices to be used on a single board, which share a common DATA, CLK and LE. **(Figure 5)**

Table 9. Serial Interface Timing Specifications

Symbol	Parameter	Min	Тур	Max	Unit
f_{CLK}	Serial data clock frequency			10	MHz
t _{AS}	Address setup time	100			ns
t _{AH}	Address hold time	100			ns
t _{PSS}	P/S setup time	100			ns
t _{PSH}	P/S hold time	100			ns
t _{ss}	Serial Data setup time	10			ns
t _{SH}	Serial Data hold time	10			ns
t _{SCKH}	Serial clock high time	30			ns
t _{SCKL}	Serial clock low time	30			ns
t _{LN}	LE setup time	10			ns
t _{LEW}	Minimum LE pulse width	30			ns

500MHz - 8000MHz

Figure 5. Multi Device Addressing Scheme using SPI

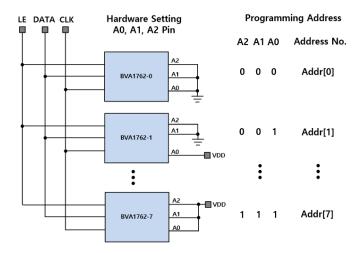
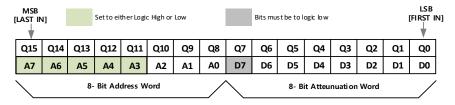


Table 10. Truth Table for Address Control Word


	ļ	Address	s Digita	al Con	trol Inp	ut			
A7	A6	A5	A4	А3	A2	A1	A0	Address	Addr No.
(MSB)							(LSB)	Setting	
Х	Х	Х	Х	Х	LOW	LOW	LOW	000	Addr[0]
Х	Х	Х	Х	Х	LOW	LOW	HIGH	001	Addr[1]
Х	Х	Х	Х	Х	LOW	HIGH	LOW	010	Addr[2]
Х	Х	Х	Х	Х	LOW	HIGH	HIGH	011	Addr[3]
Х	Х	Х	Х	Х	HIGH	LOW	LOW	100	Addr[4]
Х	Х	Х	Х	Х	HIGH	LOW	HIGH	101	Addr[5]
Х	Х	Х	Х	Х	HIGH	HIGH	LOW	110	Addr[6]
Х	Х	Х	Х	Х	HIGH	HIGH	HIGH	111	Addr[7]

Serial Register Map

The BVA1762 can be programmed via the serial control on the rising edge of Latch Enable (LE) which loads the last 8-bits attenuation word and 8-bits address word in the SHIFT Register. Data is clocked in LSB(D0) first.

The shift register must be loaded while LE is kept LOW to prevent changing the attenuation value during data is inputted.

Figure 6. Serial Register Map

The serial register consist of 16 bits as shown in Figure 6. First 8 bits from LSB are Attenuation word, 8 bits after that are Address word. The Attenuation word is DSA attenuation control bit and the Address word is static logical bit determined by A0, A1 and A2 digital inputs. The attenuation word is derived directly from the value of the attenuation state. To find the attenuation word, multiply the value of the state by four because of 0.25dB step up to 31.75dB (total 127 Attenuation state), then convert to binary.

For example, to program attenuation 15.75dB state of Addr[5] BVA1762:

Attenuation State Address state

4 x 15.75 = 63 Digital input of A2, A1, A0 pin = 101

63 -> 00111111 A7 - A0 : xxxxx101

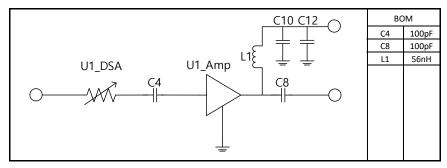
Power-Up state Settings

The BVA1762 will always initialize to the minimum Gain state (Max Attenuation = 31.75dB) on power-up and will remain in this setting until the user latches in the next programming word.

BeRex

•website: www.berex.com

•email: sales@berex.com



500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:500 ~ 1100MHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 11

Table 11. 500 ~ 1100MHz RF Application Circuit

This value can be changed little by little according to the frequency band and bandwidth.

Table 12. Typical RF Performance @ VDD = 5V

		Frequency		Unit	
Parameter	700	800	900	MHz	
Gain ¹	20.6	20.7	20.7	dB	
S11	-15.5	-17.3	-18.2	dB	
S22	-12.4	-14.4	-16.2	dB	
OIP3 ²	38.0	37.7	37.5	dBm	
P1dB	19.3	19.7	20.1	dBm	
Noise Figure	2.4	2.4	2.5	dB	

- 1. Gain data has PCB & Connectors insertion loss de-embedded
- 2. OIP3 _ measured with two tones at an output of 3 dBm per tone separated by 1 MHz.

Table 13. Typical RF Performance @ VDD = 4.0V

		Frequency		Unit	
Parameter	700	800	900	MHz	
Gain ¹	19.9	20.0	20.0	dB	
S11	-14.7	-15.3	-15.3	dB	
S22	-15.7	-18.9	-22.3	dB	
OIP3 ²	33.5	33.5	33.6	dBm	
P1dB	17.5	17.9	18.3	dBm	
Noise Figure	2.4	2.4	2.5	dB	

- 1. Gain data has PCB & Connectors insertion loss de-embedded
- 2. OIP3 _ measured with two tones at an output of 3 dBm per tone separated by 1 MHz.

Figure 7. Gain vs. Frequency @ VDD = 5V over Temperature

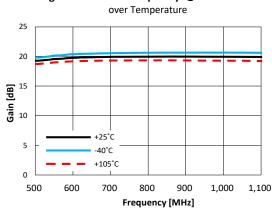



Figure 8. Gain vs. Frequency @ VDD = 4.0V

BeRex

•website: www.berex.com

•email: sales@berex.com

-30

-₄₀ └ 500

Ultra Flat Gain wideband DVGA with addressable function

500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:500 ~ 1100MHz)

4dB

1,000

31.75dB

1,100

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 11

Figure 9. Gain vs. Frequency
over Major Attenuation States

30
20
10
Eg -10
-20
OdB
0.25dB
0.5dB

1dB

8dB

700

600

Figure 10. Gain vs. Frequency vs VDD

Max Gain States

25

20

80

15

500

600

700

800

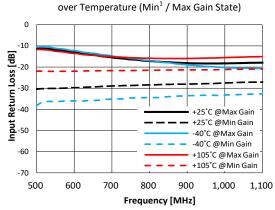
900

1,000

1,100

Frequency [MHz]

Figure 11. Input Return Loss vs. Frequency

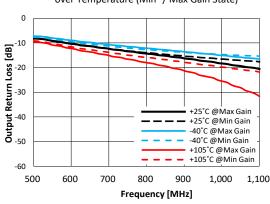

800


2dB

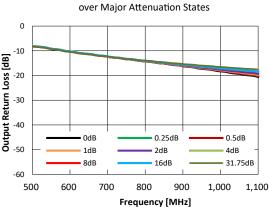
Frequency [MHz]

16dB

900



1.Min Gain was measured in the state is set with attenuation 31.75dB.


Figure 13. Output Return Loss vs. Frequency over Temperature (Min¹ / Max Gain State)

•website: www.berex.com

1.Min Gain was measured in the state is set with attenuation 31.75dB.

Figure 14. Output Return Loss vs. Frequency

•email: sales@berex.com

500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:500 ~ 1100MHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 11

Figure 15. OIP3 vs. Frequency vs. VDD

Over Temperature (Max Gain State)

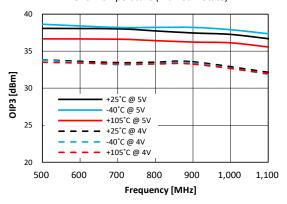


Figure 16. P1dB vs. Frequency vs. VDD

Over Temperature (Max Gain State)

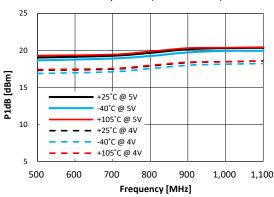


Figure 17. Noise Figure vs. Frequency @ VDD = 5V

Over Temperature (Max Gain State)

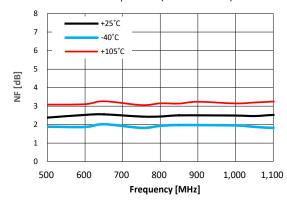
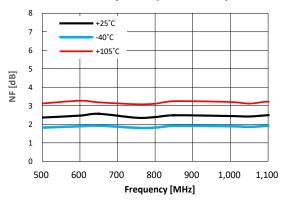



Figure 18. Noise Figure vs. Frequency @ VDD = 4.0V

Over Temperature (Max Gain State)

500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:500 ~ 1100MHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 11

Figure 19. Attenuation Error vs Frequency

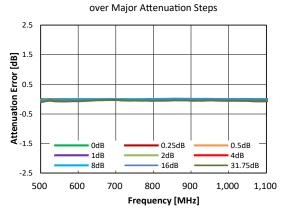


Figure 20. Attenuation Error vs Attenuation Setting

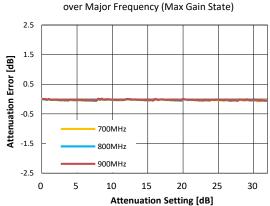


Figure 21. Attenuation Error at 700MHz vs Temperature

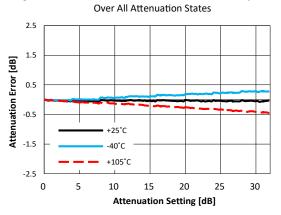


Figure 22. Attenuation Error at 800MHz vs Temperature

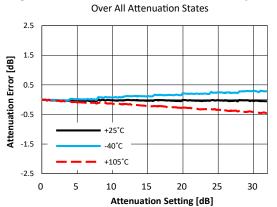
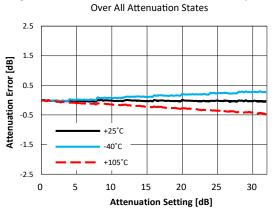
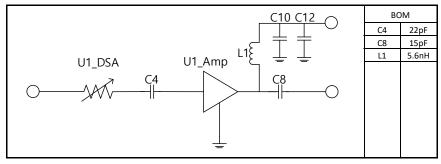



Figure 23. Attenuation Error at 900MHz vs Temperature

BeRex •website: www.berex.com •email: sales@berex.com 12



500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:1.7 ~ 2.7GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 14

Table 14. 1.7 ~ 2.7GHz RF Application Circuit

This value can be changed little by little according to the frequency band and bandwidth.

Table 15. Typical RF Performance @ VDD = 5V

Parameter		Unit		
Parameter	1800	2140	2650	MHz
Gain ¹	20.4	20.3	20.1	dB
S11	-15.8	-16.2	-16.7	dB
S22	-19.8	-29.8	-22.3	dB
OIP3 ²	36.1	35.7	35.3	dBm
P1dB	20.8	20.9	20.8	dBm
Noise Figure	2.6	2.7	2.9	dB

^{1.} Gain data has PCB & Connectors $\,$ insertion loss de-embedded $\,$

Table 16. Typical RF Performance @ VDD = 4.0V

Davamatav		Unit		
Parameter	1800	2140	2650	MHz
Gain ¹	19.6	19.4	19.3	dB
S11	-13.2	-13.5	-14.2	dB
S22	-21.3	-26.4	-21.8	dB
OIP3 ²	32.6	32.0	32.1	dBm
P1dB	19.2	19.2	19.0	dBm
Noise Figure	2.6	2.7	2.8	dB

- 1. Gain data has PCB & Connectors insertion loss de-embedded
- 2. OIP3 _ measured with two tones at an output of 3 dBm per tone separated by 1MHz.

Figure 24. Gain vs. Frequency @ VDD = 5V over Temperature

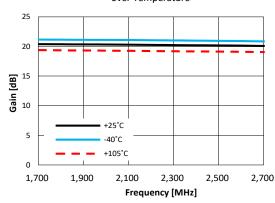
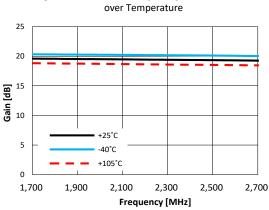



Figure 25. Gain vs. Frequency @ VDD = 4.0V

BeRex

•website: www.berex.com

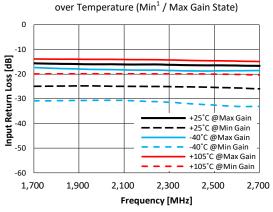
•email: sales@berex.com

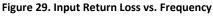
^{2.} OIP3 _ measured with two tones at an output of 3 dBm per tone separated by 1MHz.

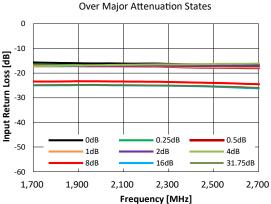
500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:1.7 ~ 2.7GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 14


Figure 26. Gain vs. Frequency over Major Attenuation States 30 20 10 Gain [dB] 0 -10 -20 0.25dB 0.5dB 0dB -30 1dB 2dB 4dB 31.75dB 8dB 16dB -40 1,700 1,900 2,100 2,300 2,500 2,700 Frequency [MHz]


Figure 27. Gain vs. Frequency vs VDD


Max Gain States

25
20
15
10
5
1,700
1,900
2,100
2,300
2,500
2,700
Frequency [MHz]

Figure 28. Input Return Loss vs. Frequency

1.Min Gain was measured in the state is set with attenuation 31.75dB.

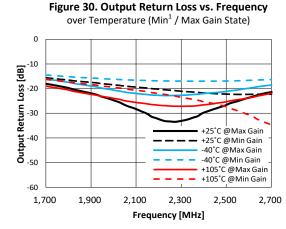
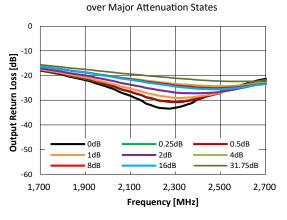
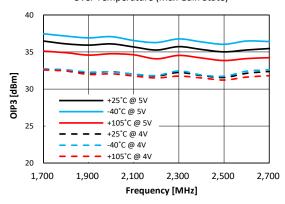



Figure 31. Output Return Loss vs. Frequency

1.Min Gain was measured in the state is set with attenuation 31.75dB.

•website: www.berex.com

•email: sales@berex.com


500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:1.7 ~ 2.7GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 14

Figure 32. OIP3 vs. Frequency vs. VDD

Over Temperature (Max Gain State)

Figure 33. P1dB vs. Frequency vs. VDD

Over Temperature (Max Gain State)

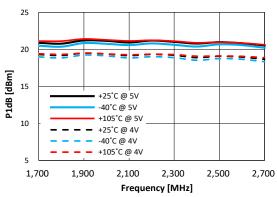


Figure 34. Noise Figure vs. Frequency @ VDD = 5V

Over Temperature (Max Gain State)

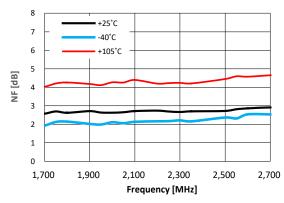
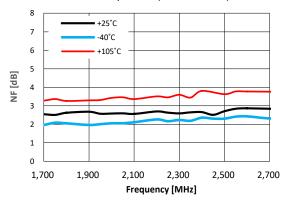



Figure 35. Noise Figure vs. Frequency @ VDD = 4.0V

Over Temperature (Max Gain State)

BeRex

•website: www.berex.com

•email: sales@berex.com

500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:1.7~ 2.7GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 14

Figure 36. Attenuation Error vs Frequency

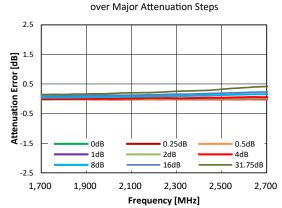


Figure 37. Attenuation Error vs Attenuation Setting

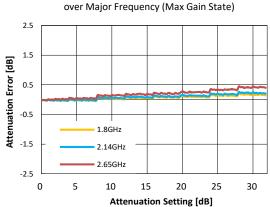


Figure 38. Attenuation Error at 1.8GHz vs Temperature

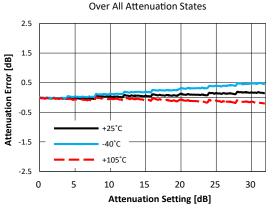


Figure 39. Attenuation Error at 2.14GHz vs Temperature

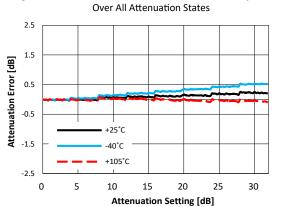
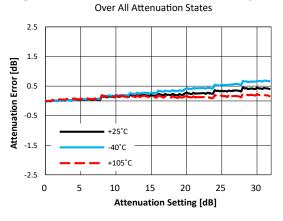
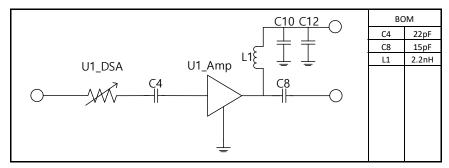



Figure 40. Attenuation Error at 2.65GHz vs Temperature

BeRex •website: www.berex.com •email: sales@berex.com 16



500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:3.3 ~ 4GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 17

Table 17. 3.3 ~ 4GHz RF Application Circuit

This value can be changed little by little according to the frequency band and bandwidth.

Table 18. Typical RF Performance @ VDD = 5V

Danamatan		Unit		
Parameter	3500	3700	3900	MHz
Gain ¹	19.7	19.6	19.5	dB
S11	-18.7	-18.6	-18.8	dB
S22	-11.5	-10.9	-10.6	dB
OIP3 ²	34.9	35.1	34.8	dBm
P1dB	20.7	20.2	20.0	dBm
Noise Figure	3.2	3.3	3.1	dB

^{1.} Gain data has PCB & Connectors insertion loss de-embedded

Table 19. Typical RF Performance @ VDD = 4.0V

Dayamatay		Unit		
Parameter	3500	3700	3900	MHz
Gain ¹	19.1	19.0	18.8	dB
S11	-21.7	-20.5	-19.6	dB
S22	-13.5	-12.7	-12.3	dB
OIP3 ²	32.9	33.3	33.1	dBm
P1dB	19.1	18.6	18.4	dBm
Noise Figure	3.2	3.3	3.3	dB

- 1. Gain data has PCB & Connectors insertion loss de-embedded
- 2. OIP3 $_$ measured with two tones at an output of $\,3$ dBm per tone separated by 1MHz.

Figure 41. Gain vs. Frequency @ VDD = 5V over Temperature

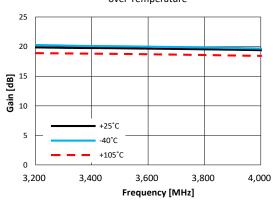
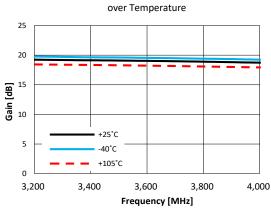



Figure 42. Gain vs. Frequency @ VDD = 4.0V

BeRex

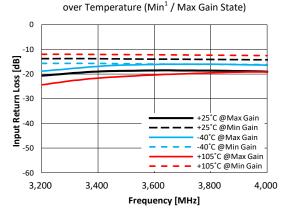
•website: www.berex.com

•email: sales@berex.com

17

^{2.} OIP3 $_$ measured with two tones at an output of 3 dBm per tone separated by 1MHz.

500MHz - 8000MHz


Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:3.3 ~ 4GHz)

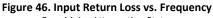
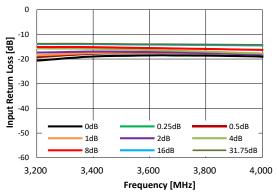

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 17

Figure 43. Gain vs. Frequency over Major Attenuation States 30 20 10 Gain [dB] 0 -10 -20 0.25dB 0.5dB OdB -30 1dB 2dB 4dB 8dB 16dB 31.75dB -40 3,200 3,400 3,600 3,800 4,000


Figure 45. Input Return Loss vs. Frequency

Frequency [MHz]

1.Min Gain was measured in the state is set with attenuation 31.75dB.

Figure 47. Output Return Loss vs. Frequency

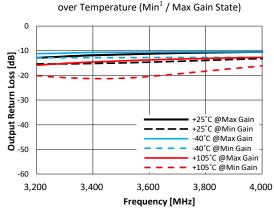
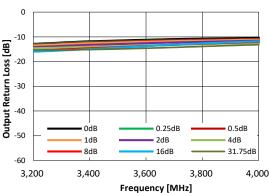



Figure 48. Output Return Loss vs. Frequency over Major Attenuation States

1.Min Gain was measured in the state is set with attenuation 31.75dB.

BeRex •website: www.berex.com

•email: sales@berex.com

Ultra Flat Gain wideband DVGA with addressable function

500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:3.3 ~ 4GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 17

Figure 49. OIP3 vs. Frequency vs. VDD Over Temperature (Max Gain State)

3,400

Figure 50. P1dB vs. Frequency vs. VDD

3,600

Frequency [MHz]

3,800

4,000

Over Temperature (Max Gain State)

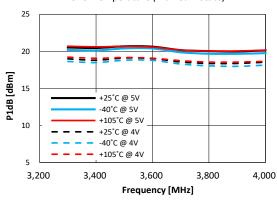


Figure 51. Noise Figure vs. Frequency @ VDD = 5V

Over Temperature (Max Gain State)

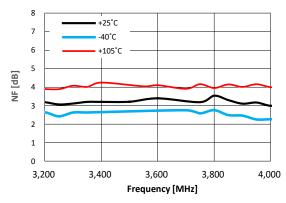
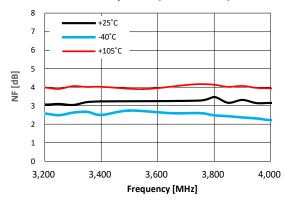



Figure 52. Noise Figure vs. Frequency @ VDD = 4.0V

Over Temperature (Max Gain State)

500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:3.3~ 4GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 17

Figure 53. Attenuation Error vs Frequency

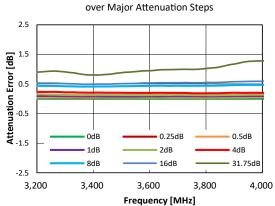


Figure 54. Attenuation Error vs Attenuation Setting

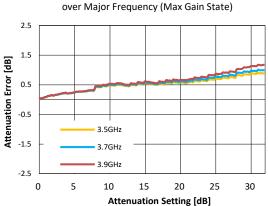


Figure 55. Attenuation Error at 3.5GHz vs Temperature

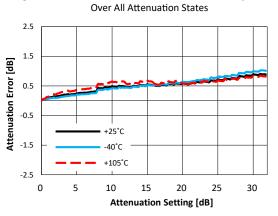


Figure 56. Attenuation Error at 3.7GHz vs Temperature

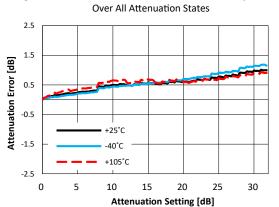
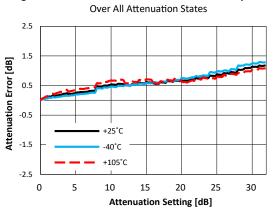
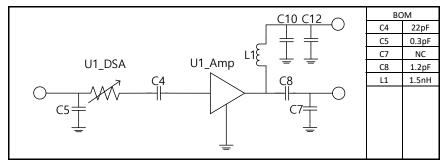



Figure 57. Attenuation Error at 3.9GHz vs Temperature

BeRex ●website: www.berex.com ●email: sales@berex.com



500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:4.2 ~ 5.0GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 20

Table 20. 4.2 ~ 5.0GHz RF Application Circuit

This value can be changed little by little according to the frequency band and bandwidth.

Table 21. Typical RF Performance @ VDD = 5V

Damanatan		Unit		
Parameter	4400	4650	4900	MHz
Gain ¹	19.3	19.1	18.8	dB
S11	-11.1	-10.7	-10.5	dB
S22	-16.3	-15.6	-16.0	dB
OIP3 ²	33.9	34.6	35.1	dBm
P1dB	21.3	20.4	20.3	dBm
Noise Figure	4.0	4.0	4.3	dB

^{1.} Gain data has PCB & Connectors insertion loss de-embedded

Table 22. Typical RF Performance @ VDD = 4.0V

Parameter		Unit		
Parameter	4400	4650	4900	MHz
Gain ¹	18.4	18.2	17.9	dB
\$11	-9.7	-9.3	-9.2	dB
S22	-17.4	-17.5	-19.0	dB
OIP3 ²	31.1	32.4	33.4	dBm
P1dB	19.5	18.9	18.8	dBm
Noise Figure	4.3	4.1	4.4	dB

^{1.} Gain data has PCB & Connectors insertion loss de-embedded

Figure 58. Gain vs. Frequency @ VDD = 5V over Temperature

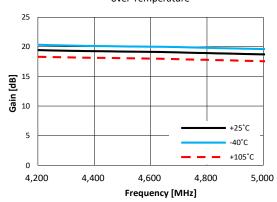
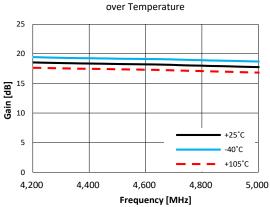



Figure 59. Gain vs. Frequency @ VDD = 4.0V

BeRex

•website: www.berex.com

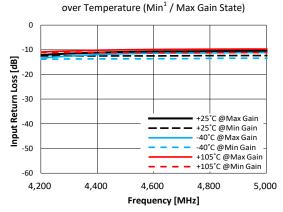
•email: sales@berex.com

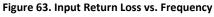
21

OIP3 measured with two tones at an output of 3 dBm per tone separated by 1MHz.

OIP3 _ measured with two tones at an output of 3 dBm per tone separated by 1MHz.

500MHz - 8000MHz


Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:4.2 ~ 5.0GHz)


Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 20

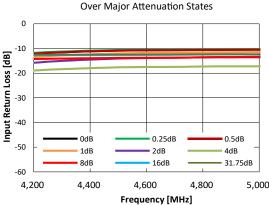
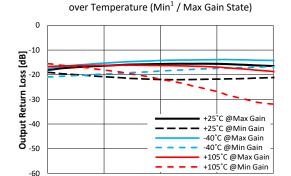
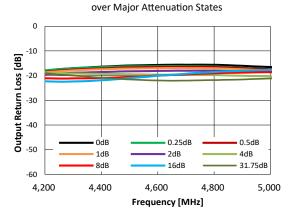

Figure 60. Gain vs. Frequency over Major Attenuation States 30 20 10 Gain [dB] 0 -10 -20 0.25dB 0 5dB OdB 1dB 2dB 4dB -30 31.75dB 8dB 16dB -40 4,200 4,400 4,600 4,800 5,000 Frequency [MHz]

Figure 61. Gain vs. Frequency vs VDD **Max Gain States** 25 20 **Gain** (48) 10 5 0 4,200 4,400 4,600 4,800 5,000 Frequency [MHz]


Figure 62. Input Return Loss vs. Frequency

1.Min Gain was measured in the state is set with attenuation 31.75dB.



4.600

Figure 64. Output Return Loss vs. Frequency

4.800 Frequency [MHz]

Figure 65. Output Return Loss vs. Frequency

1.Min Gain was measured in the state is set with attenuation 31.75dB.

4,400

•website: www.berex.com

•email: sales@berex.com

Rev. 1.1

4,200

5.000

500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:4.2 ~ 5.0GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 20

Figure 66. OIP3 vs. Frequency vs. VDD

Over Temperature (Max Gain State)

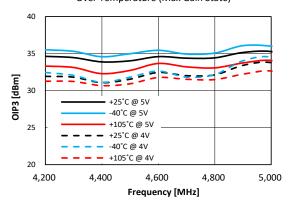


Figure 67. P1dB vs. Frequency vs. VDD

Over Temperature (Max Gain State)

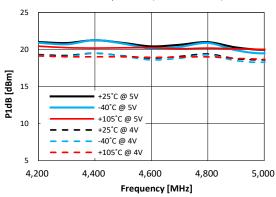


Figure 68. Noise Figure vs. Frequency @ VDD = 5V

Over Temperature (Max Gain State)

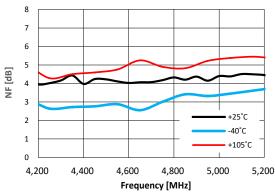
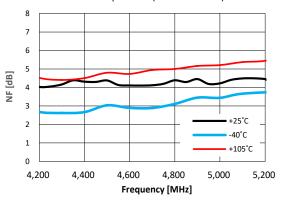



Figure 69. Noise Figure vs. Frequency @ VDD = 4.0V

Over Temperature (Max Gain State)

BeRex

•website: www.berex.com

•email: sales@berex.com

500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:4.2~ 5.0GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 20

Figure 70. Attenuation Error vs Frequency

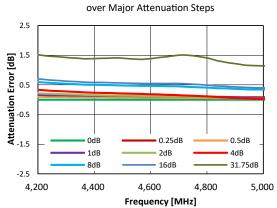


Figure 71. Attenuation Error vs Attenuation Setting

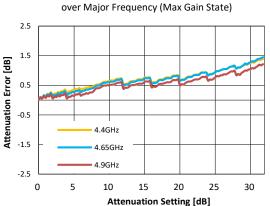


Figure 72. Attenuation Error at 4.4GHz vs Temperature

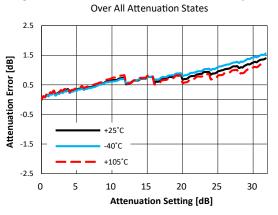


Figure 73. Attenuation Error at 4.65GHz vs Temperature

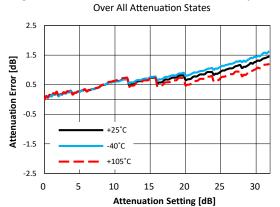
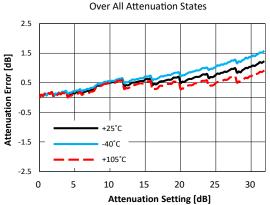
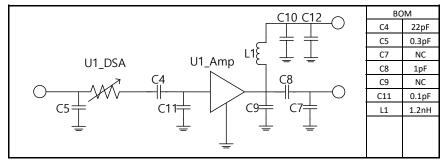



Figure 74. Attenuation Error at 4.9GHz vs Temperature



500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:5.8 ~ 7.5GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 23

Table 23. 5.8 ~ 7.5GHz RF Application Circuit

This value can be changed little by little according to the frequency band and bandwidth.

Table 24. Typical RF Performance @ VDD = 5V

Danamatan	Frequ	Unit	
Parameter	5800	7200	MHz
Gain ¹	18.0	18.2	dB
S11	-9.4	-9.6	dB
S22	-25.8	-20.1	dB
OIP3 ²	33.9	31.0	dBm
P1dB	18.8	16.5	dBm
Noise Figure	4.0	5.2	dB

^{1.} Gain data has PCB & Connectors insertion loss de-embedded

Table 25. Typical RF Performance @ VDD = 4.0V

Danamatan	Frequ	Unit	
Parameter	5800	7200	MHz
Gain ¹	16.9	16.9	dB
S11	-8.3	-8.3	dB
S22	-18.3	-15.0	dB
OIP3 ²	31.7	28.0	dBm
P1dB	17.1	14.9	dBm
Noise Figure	4.1	5.3	dB

^{1.} Gain data has PCB & Connectors insertion loss de-embedded

Figure 75. Gain vs. Frequency @ VDD = 5V over Temperature

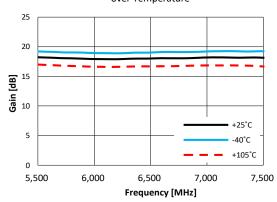
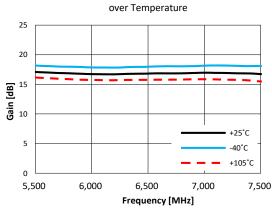



Figure 76. Gain vs. Frequency @ VDD = 4.0V

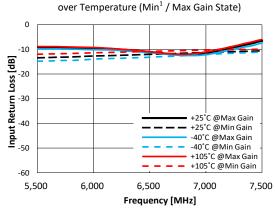
BeRex

•website: www.berex.com

•email: sales@berex.com

^{2.} OIP3 $_$ measured with two tones at an output of 3 dBm per tone separated by 1MHz.

^{2.} OIP3 $_$ measured with two tones at an output of 3 dBm per tone separated by 1MHz.


500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:5.8 ~ 7.5GHz)

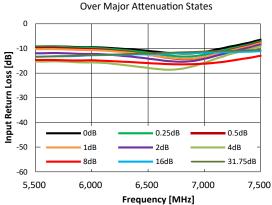
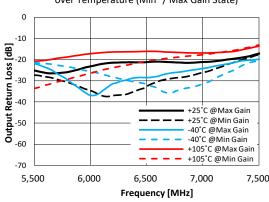

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 23

Figure 77. Gain vs. Frequency over Major Attenuation States 30 20 10 0 Gain [dB] -10 -20 0dB 0.25dB 0 5dB 1dB 2dB 4dB -30 AhR 16dB 31.75dB -40 6,500 6,000 7,000 7,500 5,500 Frequency [MHz]

Figure 79. Input Return Loss vs. Frequency



1.Min Gain was measured in the state is set with attenuation 31.75dB.

Figure 81. Output Return Loss vs. Frequency over Temperature (Min¹ / Max Gain State)

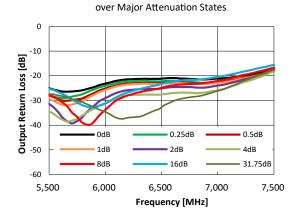
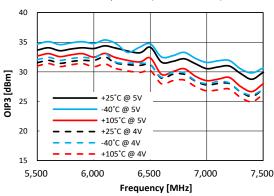


Figure 82. Output Return Loss vs. Frequency

1.Min Gain was measured in the state is set with attenuation 31.75dB.


500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:5.8 ~ 7.5GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 23

Figure 83. OIP3 vs. Frequency vs. VDD

Over Temperature (Max Gain State)

Figure 84. P1dB vs. Frequency vs. VDD

Over Temperature (Max Gain State)

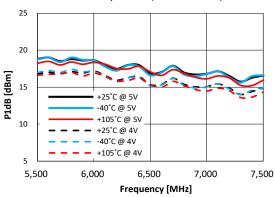


Figure 85. Noise Figure vs. Frequency @ VDD = 5V

Over Temperature (Max Gain State)

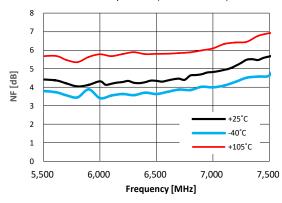
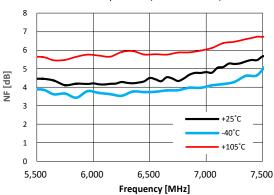



Figure 86. Noise Figure vs. Frequency @ VDD = 4.0V

Over Temperature (Max Gain State)

500MHz - 8000MHz

Typical RF Performance Plot - BVA1762 EVK - PCB (Application Circuit:6.0 ~ 7.5GHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 23

Figure 87. Attenuation Error vs Frequency

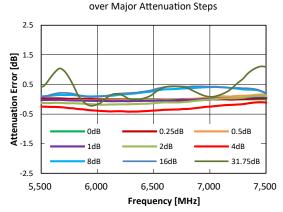


Figure 88. Attenuation Error vs Attenuation Setting

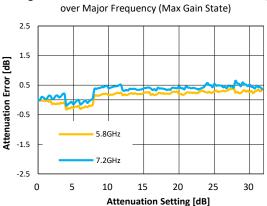


Figure 89. Attenuation Error at 5.8GHz vs Temperature

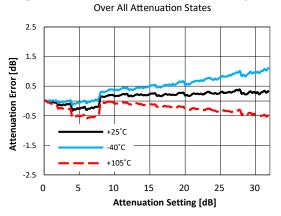
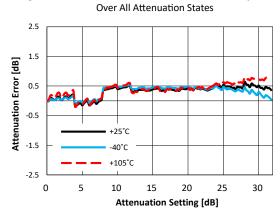



Figure 90. Attenuation Error at 7.2GHz vs Temperature

1.Min Gain was measured in the state is set with attenuation 31.75dB.

500MHz - 8000MHz

Figure 91. Evaluation Board Schematic

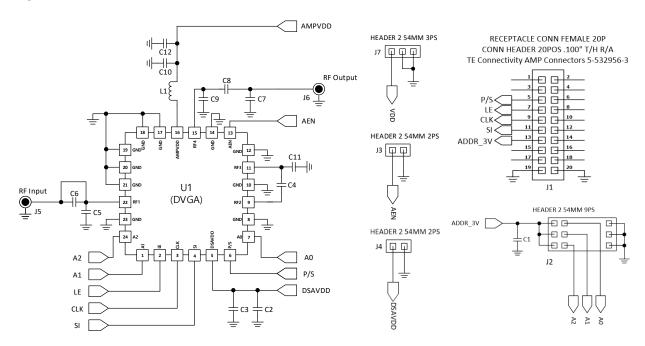
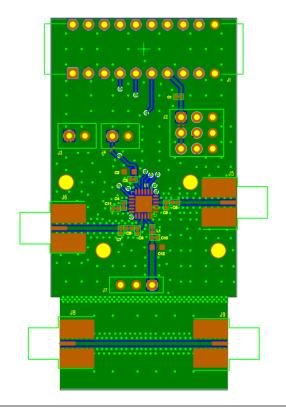



Figure 92. Evaluation Board PCB

Table 26. Application Circuit

	Application Circuit Values Example						
Frequency band	500MHz ~ 1.1GHz	1.7GHz ~ 2.7GHz	3.3GHz ~ 4.0GHz	4.2GHz ~ 5.0GHz	5.8GHz ~ 7.5GHz		
L1	56nH	5.6nH	2.2nH	1.5nH	1.2nH		
C4	100pF	22pF	22pF	22pF	22pF		
C5	NC	NC	NC	0.3pF	0.3pF		
C6	NC	NC	NC	NC	NC		
C7	NC	NC	NC	NC	NC		
C8	100pF	15pF	15pF	1.2pF	1pF		
C9	NC	NC	NC	NC	NC		
C11	NC	NC	NC	NC	0.1pF		

Table 27. Bill of Material - Evaluation Board

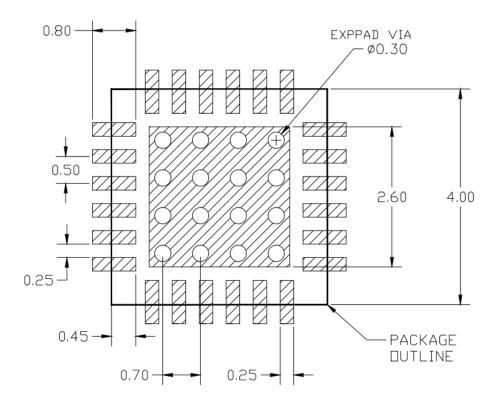
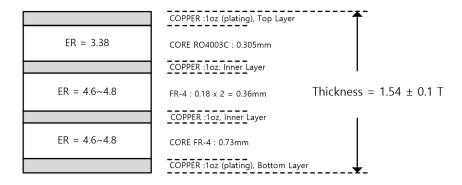
No.	Ref Des	Qty	Part Number	REMARK
1	L1	2	IND 0402	Refer to Table 26
2	C1	1	CAP 0402 100nF	
3	C4, C8	2	CAP 0402	Refer to Table 26
4	C3, C10	2	CAP 0402 100pF	
5	C2, C12	2	CAP 0603 100nF	
6	C5, C6, C7, C9, C11	5	CAP 0402	Refer to Table 26
7	J1	1	20pin Receptacle connector	2.54mm, female
8	J2	1	3pin x 3 Header array	2.54mm, male
9	J3, J4	2	2pin Header	2.54mm, male
10	J5, J6, J8, J9	4	SMA_END_LAUNCH	RF SMA Connector
11	J7	1	3pin Header	2.54mm, male
12	U1	1	QFN4X4_24L_BVA1762	

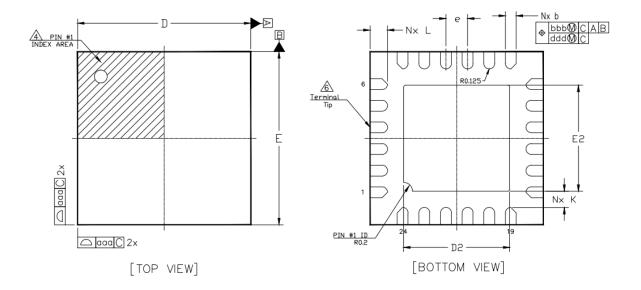
BeRex •website: www.berex.com

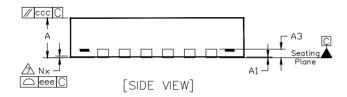
email: sales@berex.com

500MHz - 8000MHz

Figure 93. Suggested PCB Land Pattern and PAD Layout

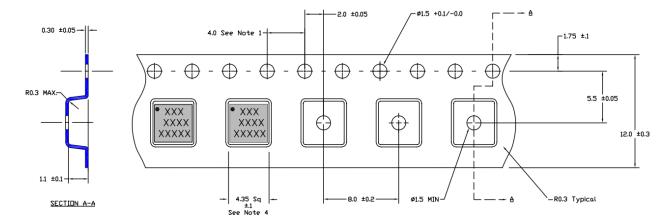

Figure 94. Evaluation Board PCB Layer Information



500MHz - 8000MHz

Figure 95. Package Outline Dimension

NOTES:


- 1. Dimensioning and tolerancing conform to ASME Y14.5-2009.
- 2. All dimensions are in millimeters.
- 3. N is the total number of terminals.
- 4. The location of the marked terminal #1 identifier is within the hatched area.
- 5. ND and NE refer to the number of terminals each D and E side respectively.
- 6. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.3mm from the terminal tip. If the terminal has a radius on the other end of it, dimension b should not be measured in that radius area.
- 7. Coplanarity applies to the terminals and all other bottom surface metallization.

Dimension Table (Notes 1,2)					
Symbel Thickness	Min	Nominal	Max	Note	
A	0.80	0.90	1.00		
A1	0.00	0.02	0.05		
A3		0.20 Ref.			
b	0.15	0.25	0.30	6	
D		4.00 BSC			
E		4.00 BSC			
е	0.50 BSC				
D2	2.30 2.45 2.55		2.55		
E2	2.30	2.45	2.55		
K	0.2				
L	0.30	0.40	0.50		
۵۵۵	0.05				
bbb		0.10			
ccc		0.10			
ddd	0.05				
eee	0.08				
N	24 3			3	
ND	6 5			5	
NE		6		5	

500MHz - 8000MHz

Figure 96. Tape & Reel

Packaging information:		
Tape Width	12mm	
Reel Size	7"	
Device Cavity Pitch	8mm	
Devices Per Reel	1K	

Figure 97. Package Marking

Marking information:			
BVA1762	Device Name		
YY	Year		
ww	Work Week		
XX	Wafer Run Number		

500MHz - 8000MHz

Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating: Class 1C

Value: ±1000V

Test: Human Body Model (HBM)

Standard: JEDEC Standard JS-001-2017

MSL Rating: Level 1 at +260°C convection reflow

Standard: JEDEC Standard J-STD-020

Proper ESD procedures should be followed when handling this device.

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

2	N	9	6	F
_		_	_	