

BVA518C

5-4000 MHz

Device Features

- Integrate DSA to Amp Functionality
- Power Supply Range AMP : Nominal 5.0V DSA : 2.7V to 5.5V
- 5-4000MHz Broadband Performance
- 20.0dB Gain @ 1.9GHz
- 5.3dB Noise Figure at max gain setting @ 1.9GHz
- 19dBm P1dB @ 1.9GHz
- 32.7dBm OIP3 @ 1.9GHz
- No matching circuit needed
- Attenuation: 0.5 dB steps up to 31.5 dB
- Safe attenuation state transitions
- High attenuation accuracy (DSA to Amp) ±(0.25 + 3% x ATT) @ 1.9GHz
- 1.8V control logic compatible
- Programming modes
 - Direct Parallel
 - Latched Parallel
 - Serial
- Unique power-up state selection
- Lead-free/RoHS2-compliant 24-lead 4mm x 4mm x 0.9mm QFN
 SMT package
 SMT package

Product Description

The BVA518C is a digitally controlled variable gain amplifier (DVGA) is featuring high linearity using the voltage 5V supply with a broadband frequency range of 5 to 4000MHz.

The BVA518C integrates a high performance digital step attenuator and high performance InGaP/GaAs HBT MMIC amplifier. Amplifier is internally matched to 50 Ohms and uses a patented **temperature compensation circuit** to provide stable current over the operating temperature range without the need for external components and a patented **over voltage protection circuit** to protect a internal device. The BVA518C is designed for high linearity gain block applications that require excellent gain flatness and designed for use in 3G/4G/5G wireless infrastructure and other high performance RF applications.

Both stages are internally matched to 50 Ohms and It is easy to use with no external matching components required.

The BVA518C always initialize to the maximum attenuation setting on power-up for both Serial and Parallel mode until next programming word is inputted.

The BVA518C is targeted for use in wireless infrastructure, point-topoint, or can be used for any general purpose wireless application.

24-lead 4mm x 4mm x 0.9mm QFN

Figure 1. Package Type

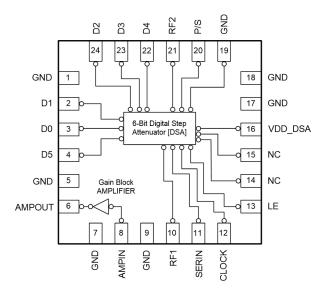


Figure 2. Functional Block Diagram

Application

- 5G/4G/3G Wireless infrastructure and other high performance RF application
- Microwave and Satellite Radio
- General purpose Wireless

•website: <u>www.berex.com</u>

BVA518C

5-4000 MHz

Table 1. Electrical Specifications ¹	@ VDD = 5V
---	------------

Parar	neter	Condition	Min	Тур	Мах	Unit
Operational Frequency Range			5		4000	MHz
Gain		ATT = 0dB, at 1900MHz		20		dB
Attenuation Control ra	inge	0.5dB Step		31.5		dB
Attenuation Step				0.5		dB
	40MHz — 1GHz				\pm (0.25 + 2.5% of ATT setting)	
	1GHz — 2GHz				\pm (0.25 + 3% of ATT setting)	
Attenuation Accuracy	2GHz — 3GHz	Any bit or bit combination			\pm (0.25 + 3% of ATT setting)	dB
	3GHz — 4GHz				\pm (0.25 + 3.5% of ATT setting)	
	5MHz — 700MHz		8	15		
	700MHz — 2GHz	ATT = 0dB	13	17		dB
Input Return Loss	2GHz — 3GHz	ATT = 00B	13	17		aв
	3GHz — 4GHz		10	13		
	5MHz — 700MHz		8	20		
Output Return Loss	700MHz — 2GHz		15	20		dB
Output Return Loss	2GHz — 3GHz	ATT = 0dB	15	25		ив
	3GHz — 4GHz		13	20		
Output Power for 1dB	Compression (OP1dB)	ATT = 0dB , at 1900MHz		18.8		dBm
Output Third Order Int	tercept Point ² (OIP3)	ATT = 0dB, at 1900MHz		32.8		dBm
Adjacent Channel Leakage Ratio ³ (ACLR)		Output Power @ 50dBc ATT = 0dB, at 1900MHz		9		dBc
Noise Figure		ATT = 0dB, at 1900MHz		5.3		dB
DSA Switching time		50% CTRL to 90% or 10% RF		500	800	ns
Maximum Spurious lev	vel	Measured at DSA RF1, RF2 ports		< -145		dBm
Impedance				50		Ω

1. Device performance _ measured on a BeRex evaluation board at 25°C, VDD=+5.0V, 50 Ω system. (DSA to AMP)

2. OIP3 measured with two tone at 3dBm output per tone separated by 1MHz.

3. ACLR measured with 5GNR 100MBW PAR=9.6dB.

BVA518C

Table 2. Typical RF Performance¹

Demonster		Frequency						Unit
Parameter	100 ²	500 ²	900 ³	1800 ³	2100 ³	2700 ³	3500 ³	MHz
Gain	22.8	22.1	21.5	20.2	19.6	18.0	15.6	dB
Input Return Loss	-11.5	-20.3	-18.5	-14.8	-14.9	-17.9	-12.2	dB
Output Return Loss	-13.1	-20.0	-16.4	-17.8	-18.2	-25.0	-24.0	dB
OIP3 ⁴	35.9	36.9	35.5	33.0	32.4	31.3	28.5	dBm
P1dB	19.8	20.3	20.0	19.1	18.5	17.3	15.2	dBm
ACLR 50dBc @ 5GNR 100MBW	-	10.5	10.2	9.1	8.5	7.0	4.7	dBm
Noise Figure	4.6	4.7	4.8	5.3	5.3	5.8	6.2	dB

1. Device performance _ measured on a BeRex evaluation board at 25°C, VDD=+5.0V, 50 Ω system. (DSA to AMP)

2. 100MHz and 500MHz measured with application circuits refer to table 11.

3. 900MHz to 3500MHz measured with application circuit refer to table 13.

4. OIP3 measured with two tone at 3dBm output per tone separated by 1MHz.

5-4000 MHz

Parameter	Condition	Min	Тур	Max	Unit
Frequency Range	Frequency Range AMP + DSA			4000	MHz
	AMP VDD	4.75	5	5.25	V
Supply Voltage, VDD	DSA VDD	2.7		5.5	V
Current IDD	AMP ON @ VDD=5V	67	77	87	mA
Current, IDD	DSA	100	200	300	uA
	Digital Input High	1.17		3.6	V
DSA Control Voltage	Digital Input Low	-0.3		0.6	V
DSA Control pin Current	DSA Control pin Current Digital Input High			20	uA
Operating Temperature	Operating Temperature AMP + DSA			105	C

Specifications are not guaranteed over all recommended operating conditions.

Table 4. Absolute Maximum Ratings

Parameter	Condition	Min	Тур	Max	Unit
Court Malkana	AMP			6.0	V
Supply Voltage	DSA			5.5	V
	AMP			160	mA
Supply Current	DSA			1000	uA
Digital input voltage	DSA Control Pin (LE, SERIN, CLK, P/S, D0, D1, D2, D3, D4, D5)	-0.3		3.6	V
	AMP			23	dBm
Maximum input power	DSA			30	dBm
Storage Temperature		-55		150	°C
Junction Temperature			150		°C

Operation of this device above any of these parameters may result in permanent damage.

Rev. 1.0

BVA518C

Wide Band Digital Variable Gain Amplifier

5-4000 MHz

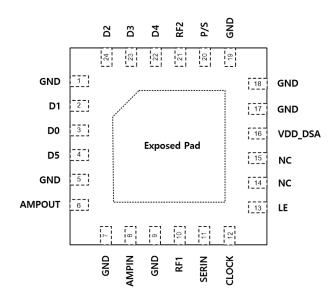


Figure 3. Pin Configuration (Top View)

Table 5. Pin Description

Pin	Pin name	Description				
2	D1	Parallel Control Voltage Input, Attenuation control bit 1dB.				
3	D0	arallel Control Voltage Input, Attenuation control bit 0.5dB.				
4	D5	Parallel Control Voltage Input, Attenuation control bit 16dB.				
6	AMPOUT	RF Amplifier Output & Amplifier Power Supply Input.				
8	AMPIN	RF Amplifier input. This pin should be connected to RF1 (Pin 10) with DC blocking Capacitor.				
10	$RF1^1$	RF1 port. (DSA RF Output) This pin should be connected to AMPIN (Pin 8) with DC blocking Capacitor.				
11	SERIN	Serial interface data input.				
12	Clock	Serial interface clock input.				
13	LE	Latch Enable input.				
14,15	NC	Not connected, It doesn't matter whether this pin is High or Low. Basically, it is recommended to set to GND.				
16	VDD_DSA	DSA Power Supply (nominal 3.3V)				
20	P/S	Parallel/Serial Mode Selection input. For parallel mode operation, set this pin to LOW. For serial mode operation, set this pin to HIGH.				
21	$RF2^1$	RF2 port. (DSA RF Input) This pin is a main RF input port. (DSA + Amplifier structure)				
22	D4	Parallel Control Voltage Inputs, Attenuation control bit 8dB				
23	D3	Parallel Control Voltage Inputs, Attenuation control bit 4dB				
24	D2	Parallel Control Voltage Inputs, Attenuation control bit 2dB				
1,5,7,9, 17,18,19	GND	Ground, These pins must be connected to ground.				
EXPOSE PAD	GND	Exposed pad : The exposed pad must be connected to ground for proper operation.				

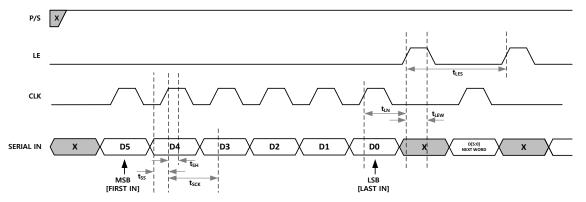
1. RF pins 10 and 21 must be at 0V DC. The RF pins do not require DC blocking capacitors for proper Operation if the 0V DC requirement is met.

•email: sales@berex.com

Programming Options

BVA518C can be programmed using either the parallel or serial interface, which is selectable via P/S pin (Pin20).

Serial mode is selected by pulling it to a voltage logic HIGH and parallel mode is selected by setting P/S to logic LOW.


Serial Control Mode

The serial interface is a 6 bit shift register to shift in the data MSB (D5) first. When serial programming is used, all the parallel control input pins (2,3,4,22,23,24) should be grounded. It is controlled by three CMOS-compatible signals: SERIN, Clock, and Latch Enable (LE).

P/S	Control Mode			
LOW	Parallel			
HIGH	Serial			

Figure 4. Serial Mode Resister Timing Diagram

The BVA518C has a 3-wire serial peripheral interface (SPI): serial data input (SERIN), clock (CLK), and latch enable (LE). The serial control interface is activated when P/S is set to HIGH.

In serial mode, the 6-bit Data is clocked MSB first on the rising CLK edges into the shift register and then LE must be toggled HIGH to latch the new attenuation state into the device. LE must be set to LOW to clock new 6-bit data into the shift register because CLK is masked to prevent the attenuator value from changing if LE is kept HIGH (see Figure 4 and Table 8).

Symbol	Parameter	Min	Тур	Max	Unit
f _{Clk}	Serial data clock frequency			10	MHz
t _{scк}	Minimum serial period	70			ns
t _{ss}	Serial Data setup time	10			ns
t _{sH}	Serial Data hold time	10			ns
t _{LN}	LE setup time	10			ns
t_{LEW}	Minimum LE pulse width	30			ns
t _{LES}	Minimum LE pulse spacing		600		ns

Table 7. Serial Interface Timing Specifications

Table 8. Truth Table for Serial Control Word

	S		Attenuation State			
D5 (MSB)	D4	D3	D2	D1	D0 (LSB)	[dB]
LOW	LOW	LOW	LOW	LOW	LOW	0
LOW	LOW	LOW	LOW	LOW	HIGH	0.5
LOW	LOW	LOW	LOW	HIGH	LOW	1
LOW	LOW	LOW	HIGH	LOW	LOW	2
LOW	LOW	HIGH	LOW	LOW	LOW	4
LOW	HIGH	LOW	LOW	LOW	LOW	8
HIGH	LOW	LOW	LOW	LOW	LOW	16
HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	31.5

•website: www.berex.com

•email: sales@berex.com

BeRex is a trademark of BeRex. All other trademarks are the property of their respective owners. © 2023 BeRex

BVA518C

Parallel Control Mode

The BVA518C has six digital control inputs, D0 (LSB) to D5 (MSB), to select the desired attenuation state in parallel mode, as shown in Table 10. The parallel control interface is activated when P/S is set to LOW. There are two modes of parallel operation: direct parallel and latched parallel

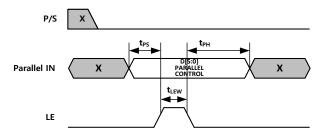
Direct Parallel Mode

The LE pin must be kept High. The attenuation state is changed by the control voltage inputs (D0 to D5) directly. This mode is ideal for manual control of the attenuator. In this mode the device will immediately react to any voltage changes to the parallel control pins [pins 2, 3, 4, 22,23, 24]. Use direct parallel mode for the fastest settling time.

Latched Parallel Mode

Power-UP Interface

The LE pin must be kept LOW when changing the control voltage inputs (D0 to D5) to set the desired attenuation state.


The BVA518C basically is set the maximum attenuation state when the initially powered up for all serial and latched parallel mode status

If the BVA518C powered up in serial mode, all parallel data pins [2,3,4,22,23,24] do not matter whether they are high or low. Basically, it is recommended to set these pins to Logic low.

until the next programming word is inputted.

LE must be toggled High to Low to latch the desired attenuation state into the device. And then LE should be held Low again until the next attenuation value to be set. (see Figure 5 and Table 10).

Figure 5. Latched Parallel Mode Timing Diagram

Table 9. Latched Parallel Interface Timing Specifications

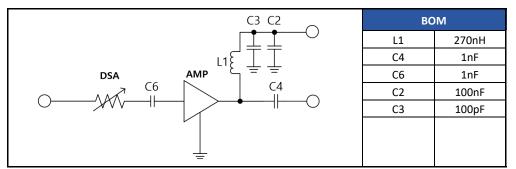
Symbol	Parameter	Min	Тур	Max	Unit
t _{LEW}	Minimum LE pulse width	10			ns
t _{РН}	Data hold time from LE	10			ns
t _{PS}	Data setup time to LE	10			ns

Table 10. Truth Table for Parallel Control Word

	Ра	Attenuation State				
D5	D4	D3	D2	D1	D0	[dB]
LOW	LOW	LOW	LOW	LOW	LOW	0
LOW	LOW	LOW	LOW	LOW	HIGH	0.5
LOW	LOW	LOW	LOW	HIGH	LOW	1
LOW	LOW	LOW	HIGH	LOW	LOW	2
LOW	LOW	HIGH	LOW	LOW	LOW	4
LOW	HIGH	LOW	LOW	LOW	LOW	8
HIGH	LOW	LOW	LOW	LOW	LOW	16
HIGH	HIGH	HIGH	HIGH	HIGH	HIGH	31.5

Rev. 1.0

BVA518C


Wide Band Digital Variable Gain Amplifier

5-4000 MHz

Typical RF Performance Plot - BVA518C EVK - PCB (Application Circuit : 100 ~ 700MHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 11

Table 11. 100 ~ 700MHz RF Application Circuit

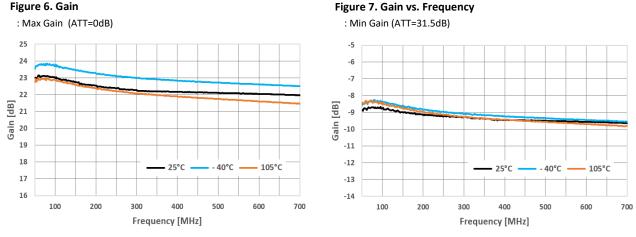

This value can be changed little by little according to the frequency band and bandwidth.

Table 12. Typical RF Performance @ VDD = 5V

Deverseter		Unit			
Parameter	100	300	500	700	MHz
Gain	22.8	22.3	22.1	22	dB
\$11	-11.5	-17.9	-20.3	-21.5	dB
S22	-13.1	-19.7	-20	-21.5	dB
OIP31	35.9	36.5	36.9	35.1	dBm
P1dB	19.8	20	20.3	20.1	dBm
ACLR 50dBc	-	10.5	10.5	10.3	dBm
Noise Figure	4.6	4.7	4.7	4.7	dB

1. OIP3 measured with two tones at an output of 3dBm per tone separated by 1MHz.

2. ACLR measured with 5GNR 100MBW PAR=9.6dB

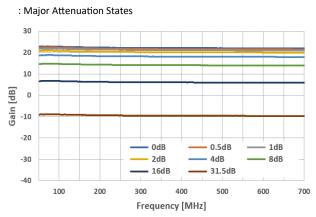
Figure 6. Gain

BeRex

•email: sales@berex.com

Specifications and information are subject to change without notice.

[•]website: www.berex.com


5-4000 MHz

BVA518C

Typical RF Performance Plot - BVA518C EVK - PCB (Application Circuit : 100 ~ 700MHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 11

Figure 8. Gain

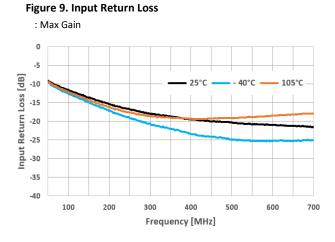
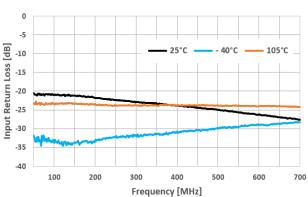



Figure 10. Input Return Loss

: Min Gain

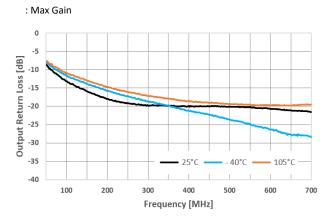
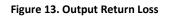
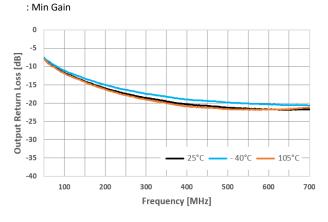




Figure 11. Input Return loss vs. Frequency

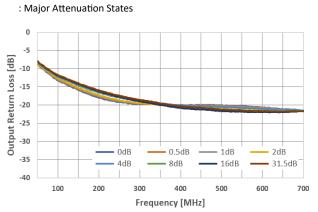
: Major Attenuation States

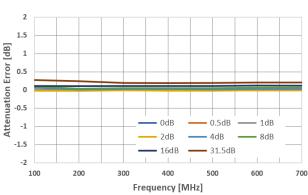
0 0dB 0.5dB 1dB -5 2dB 4dB 8dB Intput Return Loss [dB] -10 16dB 31.5dB -15 -20 -25 -30 -35 -40 100 200 300 400 500 600 700 Frequency [MHz]

BeRex

•email: <u>sales@berex.com</u>

9


5-4000 MHz

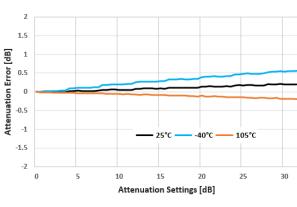

BVA518C

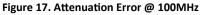
Typical RF Performance Plot - BVA518C EVK - PCB (Application Circuit : 100 ~ 700MHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 11

Figure 14. Output Return Loss

Figure 15. Attenuation Error


: Major Attenuation States


Figure 16. Attenuation Error

: Frequency 2 1.5 Attenuation Error [dB] 1 0.5 0 -0.5 100MHz 300MHz -1 500MHz -1.5 700MHz -2 10 15 20 25 30 0 5 Attenuation Settings [dB]

: 500MHz

: 100MHz 2 1.5 Attenuation Error [dB] 1 0.5 0 -0.5 -1 -40°C 105°C -1.5 -2 30 0 5 10 15 20 25 Attenuation Settings [dB]

BeRex

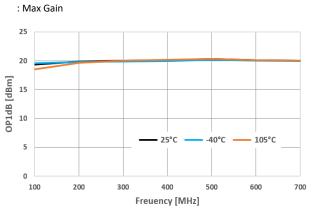
•email: sales@berex.com

700

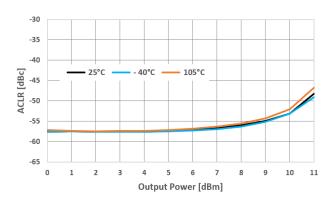
105°C

Specifications and information are subject to change without notice.

[•]website: www.berex.com


5-4000 MHz

BVA518C


Typical RF Performance Plot - BVA518C EVK - PCB (Application Circuit : 100 ~ 700MHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 11

Figure 20. OP1dB

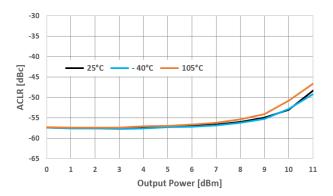
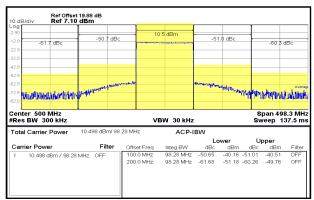
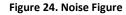


Figure 21. ACLR @ 300MHz : Max Gain, 5GNR 100MBW PAR=9.6dB




Figure 22. ACLR @ 500MHz

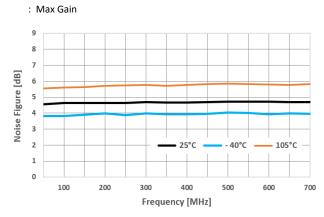

: Max Gain, 5GNR 100MBW PAR=9.6dB

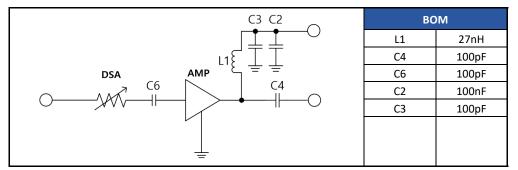
Figure 23. ACLR 50dBc @ 500MHz

BeRex

•website: <u>www.berex.com</u>

•email: sales@berex.com

BVA518C


Wide Band Digital Variable Gain Amplifier

5-4000 MHz

Typical RF Performance Plot - BVA518C EVK - PCB (Application Circuit : 800 ~ 4000MHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 13

Table 13. 800 - 4000MHz RF Application Circuit

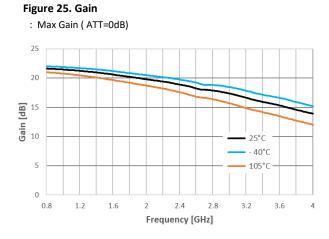
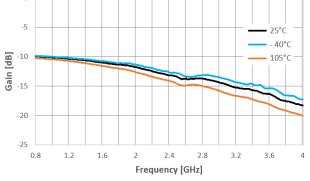

This value can be changed little by little according to the frequency band and bandwidth.

Table 14. Typical RF Performance @ VDD = 5V

D	Frequency					Unit
Parameter	900	1800	2100	2700	3500	MHz
Gain	21.5	20.2	19.6	18	15.6	dB
\$11	-18.5	-14.8	-14.9	-17.9	-12.2	dB
S22	-16.4	-17.8	-18.2	-25	-24	dB
OIP31	35.5	33	32.4	31.3	28.5	dBm
P1dB	20	19.1	18.5	17.3	15.2	dBm
ACLR ² 50dBc	10.2	9.1	8.5	7	4.7	dBm
Noise Figure	4.8	5.3	5.3	5.8	6.2	dB


1. OIP3 measured with two tones at an output of 3dBm per tone separated by 1MHz.

2. ACLR measured with 5GNR 100MBW PAR=9.6dB .

: Min Gain (ATT=31.5dB)

Figure 26. Gain

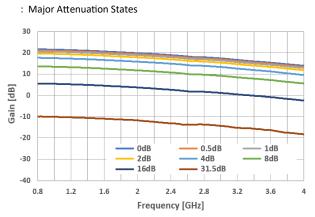
BeRex

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

12

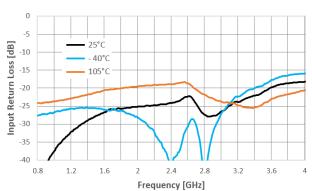
Specifications and information are subject to change without notice.


5-4000 MHz

BVA518C

Typical RF Performance Plot - BVA518C EVK - PCB (Application Circuit : 800 ~ 4000MHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 13


Figure 27. Gain vs. Frequency

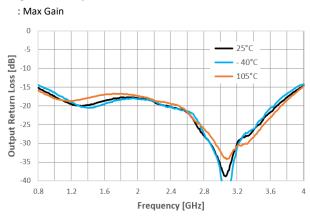

: Max Gain 0 -5 Input Return Loss [dB] -10 -15 -20 -25 25°C -30 - 40°C -35 105°C -40 0.8 1.2 1.6 2.4 2.8 2 3.2 3.6 4 Frequency [GHz]

Figure 29. Input Return Loss

: Min Gain

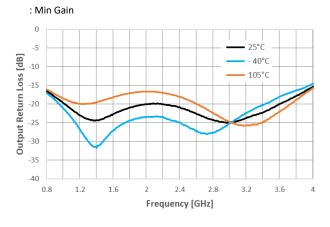


Figure 30. Input Return loss

Figure 32. Output Return Loss

Figure 28. Input Return Loss

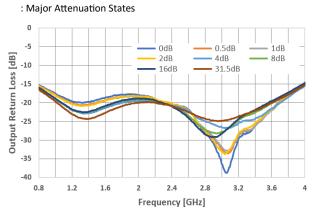
: Major Attenuation States 0 -5 0dB 0.5dB 1dB 4dB 2dB 8dB Input Return Loss [dB] -10 16dB - 31.5dB -15 -20 -25 -30 -35 -40 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 Frequency [GHz]

BeRex

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

Specifications and information are subject to change without notice.


5-4000 MHz

BVA518C

Typical RF Performance Plot - BVA518C EVK - PCB (Application Circuit : 800 ~ 4000MHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 13

Figure 33. Output Return Loss

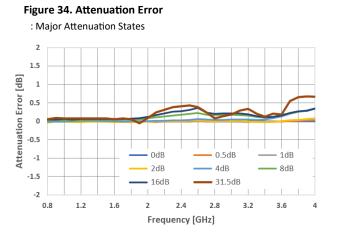
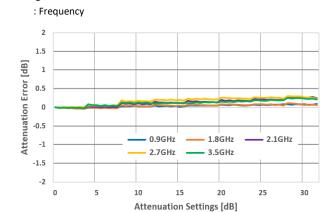



Figure 35. Attenuation Error

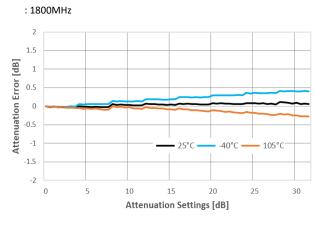


Figure 36. Attenuation Error @ 900MHz

: 900MHz 2 1.5 Attenuation Error [dB] 1 0.5 0 -0.5 -1 -1.5 25°C -40°C 105°C -2 30 0 5 10 15 20 25 Attenuation Settings [dB]

Figure 38. Attenuation Error @ 2100MHz

: 2100MHz

2 1.5 Attenuation Error [dB] 1 0.5 0 -0.5 -1 -40°C 105°C 25°C -1.5 -2 0 5 10 15 20 25 30 Attenuation Settings [dB]

BeRex

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

14

5-4000 MHz

BVA518C

Typical RF Performance Plot - BVA518C EVK - PCB (Application Circuit : 800 ~ 4000MHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 13

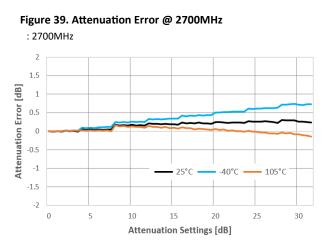
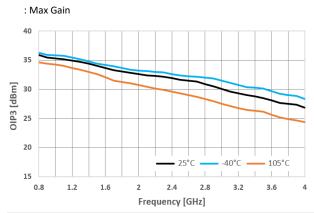



Figure 41. OIP3

: Max Gain

Figure 42. OP1dB

: 3500MHz

2

1.5

1

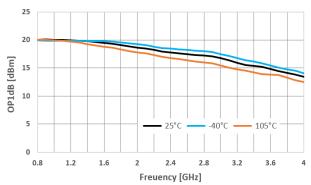
0.5

0

-0.5

-1

-1.5


-2

0

5

10

Attenuation Error [dB]

25°C

15

Attenuation Settings [dB]

-40°C

20

105°C

30

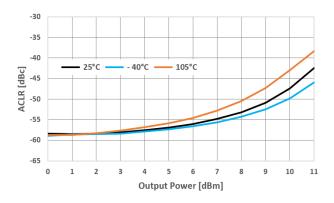

25

Figure 44. ACLR @ 1800MHz

: Max Gain, 5GNR 100MBW PAR=9.6dB

Figure 40. Attenuation Error @ 3500MHz

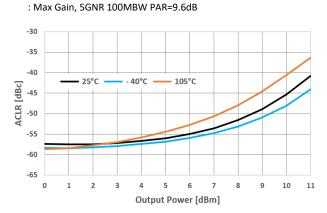
BeRex

•website: <u>www.berex.com</u>

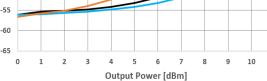
•email: <u>sales@berex.com</u>

15

5-4000 MHz


11

BVA518C


Typical RF Performance Plot - BVA518C EVK - PCB (Application Circuit : 800 ~ 4000MHz)

Typical Performance Data @ 25°C and VDD = 5V unless otherwise noted and Application Circuit refer to Table 13

Figure 45. ACLR @ 2100MHz

: Max Gain, 5GNR 100MBW PAR=9.6dB

Figure 47. ACLR @ 3500MHz

: Max Gain, 5GNR 100MBW PAR=9.6dB

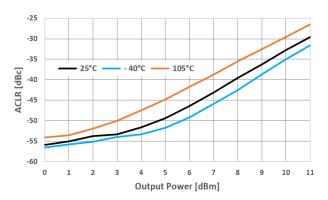
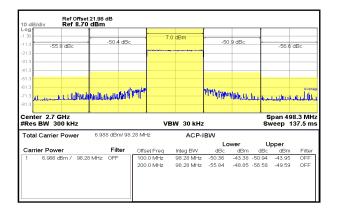
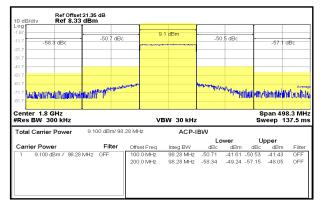




Figure 49. ACLR 50dBc @ 2700MHz

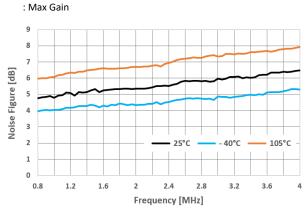


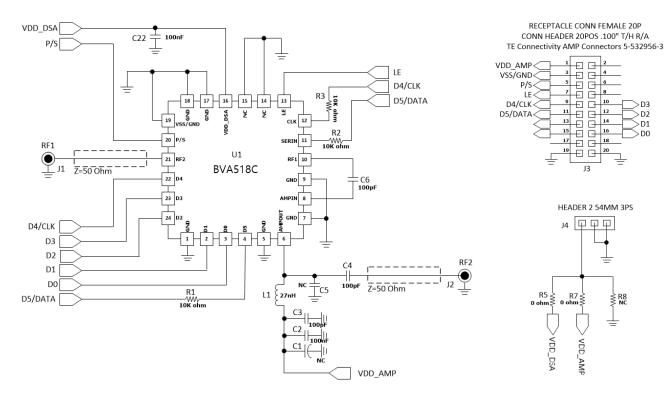
Figure 48. ACLR 50dBc @ 1800MHz

Figure 46. ACLR @ 2700MHz

Figure 50. Noise Figure

BeRex

•email: <u>sales@berex.com</u>


16

5-4000 MHz

BVA518C

Figure 51. Evaluation Board Schematic

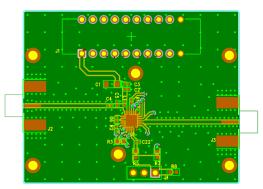


Table 15. Application Circuit

Application Circuit Values Example			
Freg. Band	IF Circuit	IF Circuit	RF Circuit
Treq. Bana	5 - 100MHz	100 - 700MHz	800MHz - 4GHz
C4/C6	10nF	10nF	100pF
L1	4.7uH	270nH	27nH

This value can be changed little by little according to the frequency band and bandwidth.

Figure 52. Evaluation Board layout

Table 16. Bill of Material - Evaluation Board

No.	Ref Des	Part Qty	Part Number	REMARK
1	C4,C6	2	CAP 0402 100pF J 50V	
2	C2,C22	1	CAP 0402 100nF J 50V	
5	L1	1	IND 0402 27nH	
6	C3	1	CAP 0402 100pF J 50V	
7	R1,R2,R3	3	RES 0402 J 10K	
8	R5,R7	2	RES 0603 J 0ohm	
9	J1	1	Receptacle connector 20pin	
10	U1	1	QFN4X4_24L_BVA518C	
11	J2,J3	2	SMA_END_LAUNCH	
12	J4	1	Header 2.54mm 3pin	

This BOM is defined based on the 800MHz to 4GHz application circuit.

BeRex

•website: <u>www.berex.com</u>

•email: sales@berex.com

Specifications and information are subject to change without notice.

5-4000 MHz

BVA518C

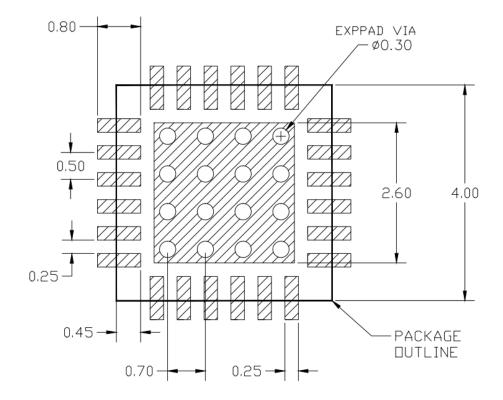
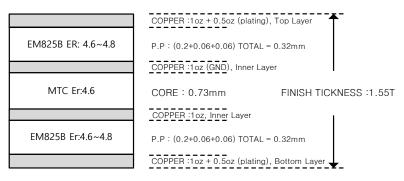
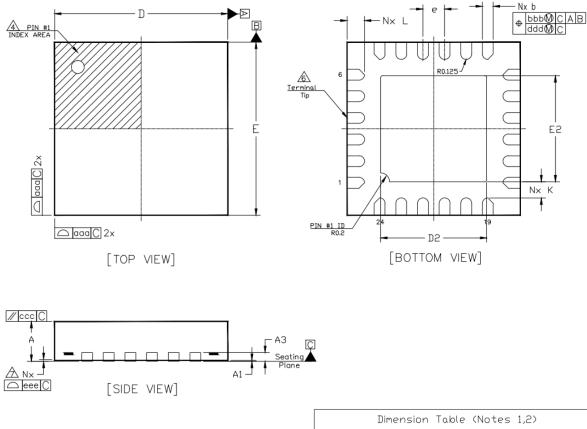



Figure 53. Suggested PCB Land Pattern and PAD Layout

Figure 54. Evaluation Board PCB Layer Information

•website: <u>www.berex.com</u>


Specifications and information are subject to change without notice.

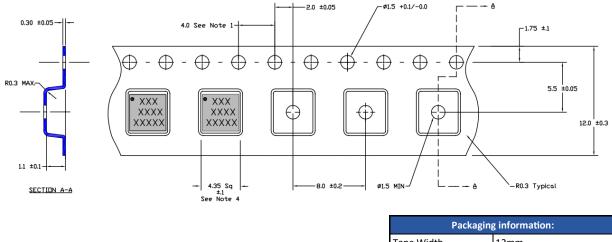
5-4000 MHz

BVA518C

Figure 55. Package Outline Dimension

NOTES:

- 1. Dimensioning and tolerancing conform to ASME Y14.5-2009.
- 2. All dimensions are in millimeters.
- 3. N is the total number of terminals.
- The location of the marked terminal #1 identifier is within the hatched area.
- 5. ND and NE refer to the number of terminals each D and E side respectively.
- 6. Dimension b applies to the metallized terminal and is measured between 0.15mm and 0.3mm from the terminal tip. If the terminal has a radius on the other end of it, dimension b should not be measured in that radius area.
- 7. Coplanarity applies to the terminals and all other bottom surface metallization.


D	imension	Table (No	tes 1,2)	
Symbel Thickness	Min	Nominal	Max	Note
A	0.80	0.90	1.00	
A1	0.00	0.02	0.05	
A3		0.20 Ref.		
b	0.18	0.25	0.30	6
D		4.00 BSC		
E		4.00 BSC		
e		0.50 BSC		
D2	2.30	2.45	2.55	
E2	2.30	2.45	2.55	
К	0.2			
L	0.30	0.40	0.50	
ممم		0.05		
bbb	bbb			
ссс	ccc			
ddd	bbb			
eee		0.08		
N		24		3
ND	6			5
NE	6			5

5-4000 MHz

BVA518C

Figure 56. Tape & Reel

Tape Width	12mm
Reel Size	7"
Device Cavity Pitch	8mm
Devices Per Reel	1K

Figure 57. Package Marking

Marking information:		
BVA518C	Device Name	
YY	Year	
ww	Work Week	
хх	Wafer Run Number	

BVA518C

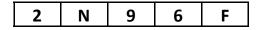
Lead plating finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating:	Class 1C
Value:	±1000V
Test:	Human Body Model (HBM)
Standard:	JEDEC Standard JS-001-2017
MSL Rating:	Level 1 at +260°C convection reflow
Standard:	JEDEC Standard J-STD-020


Proper ESD procedures should be followed when handling this device.

RoHS Compliance

This part is compliant with Restrictions on the use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) Directive 2011/65/EU as amended by Directive 2015/863/EU.

This product also is compliant with a concentration of the Substances of Very High Concern (SVHC) candidate list which are contained in a quantity of less than 0.1%(w/w) in each components of a product and/or its packaging placed on the European Community market by the BeRex and Suppliers.

NATO CAGE code:

