

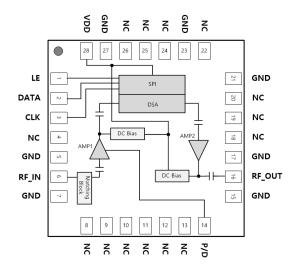
1.4 – 2.3GHz

BVA7212

Product Description

The BVA7212 is a digitally controlled variable gain amplifier (DVGA) in a 6mm x 6mm LGA package, with a frequency range of 1.4GHz to 2.3GHz at VDD of 5.0V.

The BVA7212 is a high performance and high dynamic range makes it ideally suited for use in LTE/3G/5G wireless infrastructure and other high performance wireless RF applications.


The BVA7212 is an integration of a high performance digital 6-bit attenuator (DSA) that provides a 31.5dB attenuation range in 0.5dB steps and two amplifiers. Two amplifiers in BVA7212 provide high OIP3 and OP1dB.

The BVA7212 digital control interface supports serial programming of the Step attenuator (DSA) and has a power down feature for power savings with Power Down (P/D) mode.

This device is packaged in a 28-pin LGA, 6mm x 6mm x 0.95mm with 50Ω single-ended RF input and RF output impedances for ease of integration into the signal-path.

The BVA7212 does not require blocking capacitors. If DC is presented at the RF port, add a blocking capacitor.

Figure 1. Functional Block Diagram

Figure 2. Package Type

28-pin 6mm x 6mm x 0.95mm LGA

Device Features

- 28-pin 6mm x 6mm x 0.95mm LGA Package
- Integrated AMP1 + DSA + AMP2
- A Single Voltage Supply : +5.0V / 180mA
- 1.4 2.3GHz Frequency Range
- 33.2dB Gain @ 1.8GHz
- Gain Flatness Under 1.0dB @ 900MHz BW (1.4 - 2.3GHz) Under 0.5dB @ 400MHz BW (1.8 - 2.2GHz)
- 3.3dB Noise Figure @ 1.8GHz (Max gain)
- 24dBm Output P1dB @ 1.8GHz (Max gain)
- High Output IP3

 40.5dBm @ 1.8GHz, ATT 0dB (Max gain)
 40.1dBm @ 1.8GHz, ATT 6dB
 32.4dBm @ 1.8GHz, ATT 20dB
- Attenuation Range
 0 31.5dB / 0.5 dB step
- Glitch-less attenuation state during transitions
- High attenuation accuracy ±(0.25dB + 6% x Atten) @ 1.4 - 2.3GHz
- Serial Programming Interface only
- Power Down Mode (P/D)
- Lead-free/RoHS2-compliant SiP LGA SMT Package

Application

- 5G/4G/3G wireless Infrastructure
- Small Cells
- Repeaters

•website: www.berex.com

Specifications and information are subject to change without notice.

BeRex is a trademark of BeRex. All other trademarks are the property of their respective owners. © 2020 BeRex

1/4W Flat Gain Digital Variable Gain Amplifier

Table 1. Electrical Specifications

Typical Performance Data @ 25°C and VDD = 5.0V, ATT = 0dB state (Max gain) unless otherwise noted. (De-embedded PCB and connector Loss)

Pa	arameter	Condition	Min	Тур	Max	Unit
Operationa	al Frequency Range		1.4		2.3	GHz
	Gain	ATT = 0dB, @ 1.8GHz	30.7	33.2	35.7	dB
		1.8GHz to 2.2GHz		0.5		dBpp
Ga	in Flatness	1.4GHz to 2.3GHz		1.0		dBpp
Attenuati	ion Control range	0.5dB step			31.5	dB
Atte	nuation Step			0.5		dB
Attenua	ation Accuracy	Any bit or bit combination	- (0.25 +6% of ATT. setting)		+ (0.25 +6% of ATT. setting)	dB
	Input Return Loss			15		
Return loss	Output Return Loss	Attenuation = 0dB		12		dB
Output Power	for 1dB Compression	ATT = 0dB , @ 1.8GHz		24		dBm
		ATT = 0dB, @ 1.8GHz Pout= 7dBm/tone △f=1MHz	36	40.5		dBm
Output Third	Order Intercept Point	ATT= 20dB, @ 1.8GHz Pin= -20dBm/tone △f=1MHz		32.4		dBm
Nc	oise Figure	ATT = 0dB, @ 1.8GHz		3.3		dB
DSA S	witching time	50% CTRL to 90% or 10% RF		500	800	ns
Power Down	(P/D) Switching time	50% CTRL to 90% or 10% RF		150		ns
Sup	ply voltage	AMP1, DSA, AMP2		5		V
Sup	ply Current	AMP1, DSA, AMP2	144	180	216	mA
		Digital input high	1.17		3.6	V
DSA control Voltage		Digital input low	-0.3		0.63	V
		P/D high (AMP1 Off)	1.17		5	V
P/D co	ontrol Voltage	P/D low (AMP1 On)	0		0.63	V
P/D control Voltage		Current(AMP2) @ P/D High (AMP1 off)		90		mA
In	npedance			50		Ω

1/4W Flat Gain Digital Variable Gain Amplifier

1.4 – 2.3GHz

Table 2. Typical RF Performance¹

Parameter		Frequency			Unit	
Frequency	1.4	1.6	1.8	2.1	2.3	GHz
Gain	32.7	33.0	33.2	33.6	33.3	dB
\$11	-17.8	-16.8	-15.3	-19.9	-23.1	dB
522	-9.4	-11.0	-12.6	-12.4	-8.7	dB
OIP3 ² (Max Gain, ATT=0dB)	42	41.8	40.6	39.6	39.1	dBm
OIP3 ² (ATT=20dB)	30.8	32.2	32.5	32.1	31.7	dBm
OP1dB	23.9	23.7	23.6	23.9	24.2	dBm
N.F (Max Gain, ATT=0dB)	3.4	3.3	3.3	3.4	3.5	dB
N.F (ATT=20dB)	11.4	10.9	10.6	10.4	10.7	dB

¹ Device performance measured on a BeRex evaluation board at 25°C, VDD=+5.0V, 50 Ω system. measure on Evaluation Board De-embedded PCB and Connector Loss.

 ${\rm ^2}$ OIP3 measured with two tones at an output of +7dBm per tone separated by 1MHz.

Table 3. Absolute Maximum Ratings¹

Parameter	Min	Тур	Max	Unit
Supply Voltage (VDD)	-0.3		5.5	V
Digital input voltage	-0.3		3.6	V
Maximum input power			+15	dBm
Storage Temperature	-55		+150	°C
Junction Temperature			+160	°C

¹ Operation of this device above any of these parameters may result in permanent damage.

Table 4. Recommended Operating Conditions¹

Parameter	Min	Тур	Max	Unit
Frequency Range	1.4		2.3	GHz
Supply Voltage (VDD)	4.75	5	5.25	V
Operating Temperature	-40		+105	°C
Thermal Resistance $R_{TH}(\theta_{JA})$		41.4		°C/W

¹ Specifications are not guaranteed over all recommended operating conditions.

BeRex

•website: <u>www.berex.com</u>

•email: sales@berex.com

1/4W Flat Gain Digital Variable Gain Amplifier

1.4 – 2.3GHz

Programming Option

Programming Mode

The BVA7212 is only operating in Serial Mode.

Serial Interface

The serial interface is a 6-bit serial-in, parallel-out shift register buffered by a transparent latch. It is controlled by three CMOScompatible signals: Data, Clock, and Latch Enable (LE). The Data and Clock inputs allow data to be serially entered into the shift register, a process that is independent of the state of the LE input.

The LE input controls the latch. When LE is HIGH, the latch is transparent and the contents of the serial shift register control the attenuator. When LE is brought LOW, data in the shift register is latched.

The shift register should be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data. The timing for this operation is defined by Figure 4 (Serial Interface Timing Diagram) and Table 6 (Serial Interface AC Characteristics).

Table 5. Serial Attenuation word Truth Table¹

C16	C8	C4	C2	C1	C0.5	Attenuation State
0	0	0	0	0	0	Reference Loss
0	0	0	0	0	1	0.5 dB
0	0	0	0	1	0	1 dB
0	0	0	1	0	0	2 dB
0	0	1	0	0	0	4 dB
0	1	0	0	0	0	8 dB
1	0	0	0	0	0	16 dB
1	1	1	1	1	1	31.5 dB

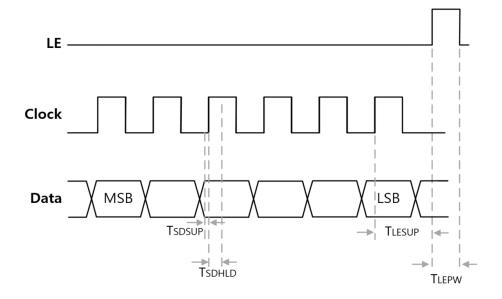
¹Not all 64 possible combinations of C0.5–C16 are shown in table.

Power-up Control Settings

The BVA7212 always assumes a specifiable attenuation setting on power-up.

The BVA7212 is set to 28dB Attenuation setting by default on powerup. This attenuation setting is kept on until an initial serial control word is provided.

Figure 3. 6-Bit Attenuator Serial Programming Register Map


MSB (first in)					LSB (last in)
					ļ
B5	B4	В3	B2	B1	во
C16	C8	C4	C2	C1	C0.5

1/4W Flat Gain Digital Variable Gain Amplifier

1.4 – 2.3GHz

Figure 4. Serial Interface Timing Diagram

Table 6. Serial Interface AC Characteristics

VDD= 5.0V with DSA only, -40°C \leq TA \leq 105°C, unless otherwise specified

Symbol	Parameter	Min	Max	Unit
FCLK	Serial data clock frequency ¹		10	MHz
TCLKH	Serial clock HIGH time	30		ns
TCLKL	Serial clock LOW time	30		ns
TLESUP	LE set-up time after last clock rising edge	10		ns
TLEPW	LE minimum pulse width	30		ns
TSDSUP	Serial data setup time before rising edge	10		ns
TSDHLD	Serial data hold time after clock rising edge	10		ns


¹ FCLK is verified during the functional pattern test. Serial programming sections of the functional pattern are clocked at 10 MHz to verify FCLK specification

1.4 – 2.3GHz

BVA7212

Figure 5. Pin Configuration

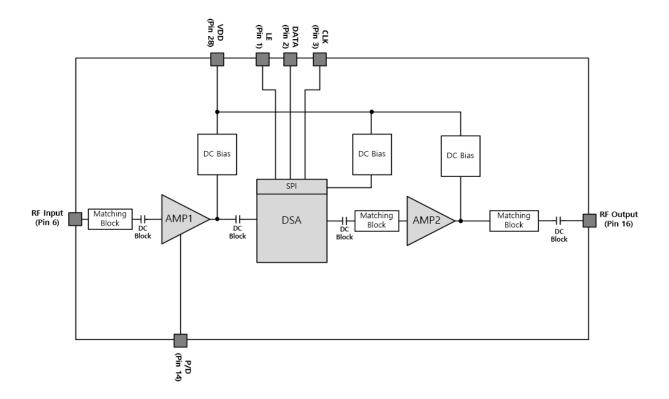
Table 7. Pin Description

Pin	Pin name	Description
5,7,15,17, 21,23,27	GND	RF/DC Ground
1	LE	Serial Latch Enable Input. When LE is high, latch is clear and content of SPI control the attenuator. When LE is low, data in SPI is latched.
2	DATA	Serial Data Input. The data and clock pins allow the data to be entered serially into SPI and is independent of Latch state.
3	CLK	Serial Clock Input.
6	RF_IN	RF input, matched to 50 ohm. Internally DC blocked.
14	P/D	VDD Power Down control Input. With Logic High(1.17 to 5V), Amplifier is Disabled. With Logic Low (0 to 0.63V), Amplifier is Enabled.
16	RF_OUT	RF output, matched to 50 ohm. Internally DC blocked.
28	VDD	SPI and DSA DC supply. This pin is connected to bypass capacitor internally.
4,8-13,18-20, 22,24-26	NC	Doesn't matter how these pins are NC (No Connection) or recommend connect to ground.
Exposed Pad	GND	RF/DC Ground

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

Specifications and information are subject to change without notice.

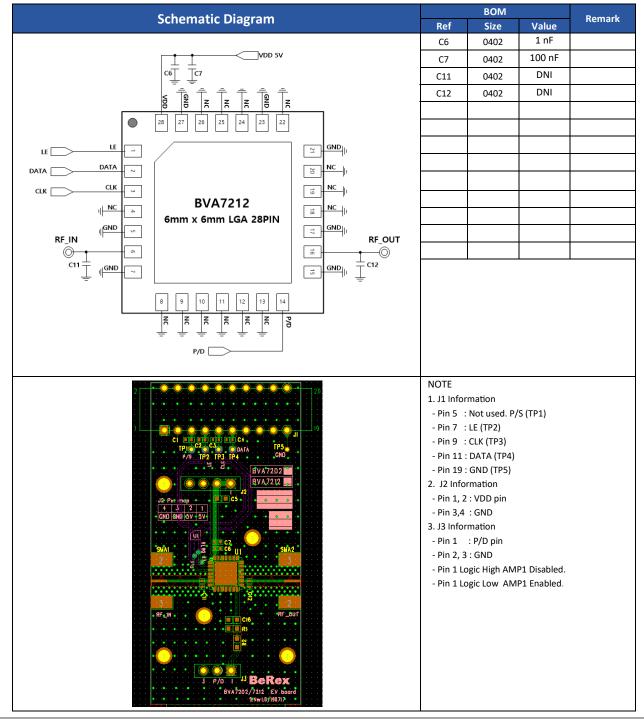

BVA7212

1.4 – 2.3GHz

Figure 6. Internal Function Block Diagram

The BVA7212 is integrated two gain blocks (AMP1, AMP2) and one digital step attenuator (DSA). Additionally, the BVA7212 includes an internal bias circuits and RF Matching to improve the RF performances at 1.4GHz - 2.3GHz.

The block diagram of BVA7212 is shown below.


1/4W Flat Gain Digital Variable Gain Amplifier

1.4 – 2.3GHz

Typical RF Performance - BVA7212 EVK - PCB

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted.

Table 8. Application Circuit

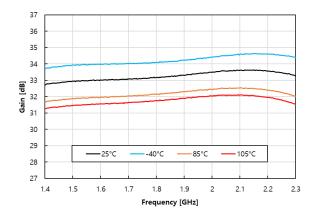
1/4W Flat Gain Digital Variable Gain Amplifier

1.4 – 2.3GHz

Typical RF Performance - BVA7212 EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Table 9. Typical Performance by Temperature²: 1.8GHz


Parameter		Typical Values			
Temperature	-40	25	85	105	°C
VDD	5	5	5	5	Vdc
Current	175	180	185	183	mA
Gain	34.1	33.2	32.2	31.6	dB
S11	-14.4	-15.3	-16.2	-16.6	dB
S22	-11.6	-12.6	-13.8	-14.3	dB
OIP3 ¹	38.3	40.5	40.3	39.3	dBm
OP1dB	23.9	23.6	23.3	23.2	dBm
Noise Figure	2.7	3.33	3.92	4.02	dB

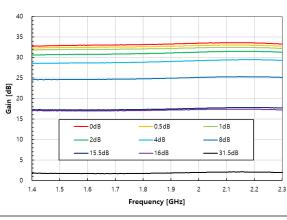
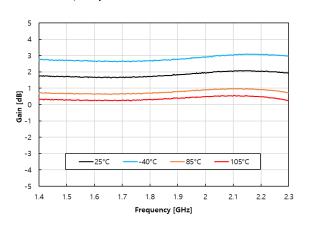
 1 OIP3 measured with two tones at an output of 7dBm per tone separated by 1MHz.

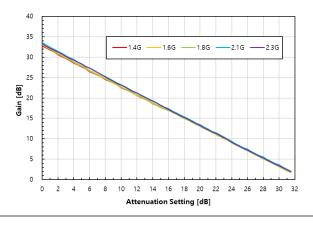
² Above test parameters are measured at Max Gain State (ATT=0dB)

Figure 7. Gain

: Max Gain, Temp.

: Attenuation Setting


Figure 8. Gain

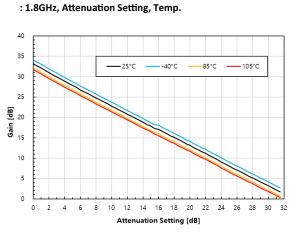
: Min Gain, Temp.

Figure 10. Gain

: Frequency, Attenuation Setting

BeRex

email: <u>sales@berex.com</u>


1.4 – 2.3GHz

BVA7212

Typical RF Performance - BVA7212 EVK

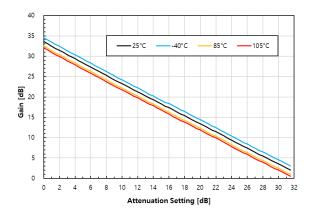
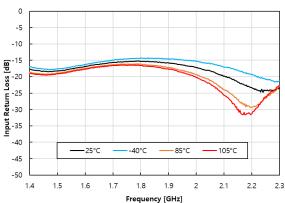

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 11. Gain


Figure 12. Gain

: 2.1GHz, Attenuation Setting, Temp.

: Max Gain, Temp.

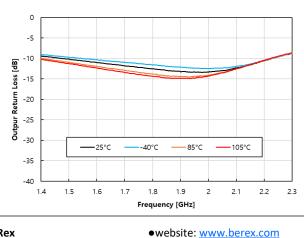


Figure 14. Input Return Loss

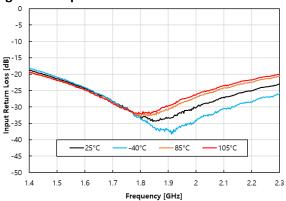
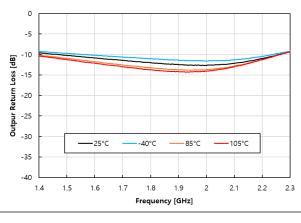
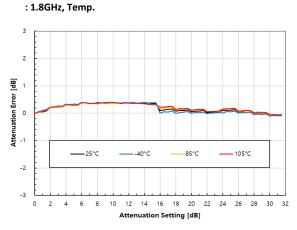



Figure 16. Output Return Loss : Min Gain, Temp.

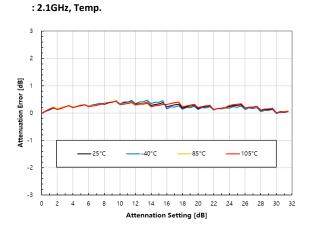
•email: sales@berex.com

10

BeRex is a trademark of BeRex. All other trademarks are the property of their respective owners. © 2020 BeRex


1.4 – 2.3GHz

BVA7212


Typical RF Performance - BVA7212 EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 17. Attenuation Error

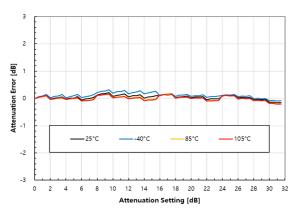
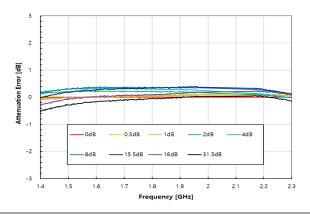
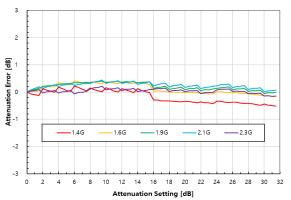


Figure 18. Attenuation Error



: 2.3GHz, Temp.



BeRex

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

Figure 20. Attenuation Error

1.4 – 2.3GHz

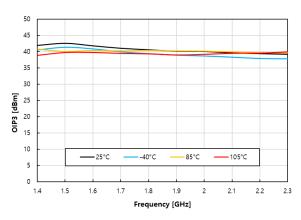
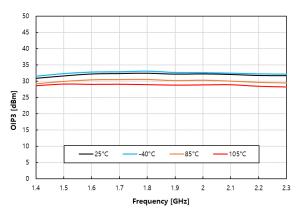
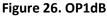
BVA7212

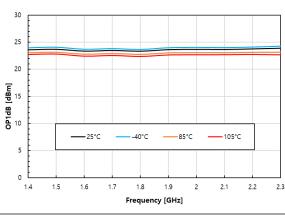
Typical RF Performance - BVA7212 EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

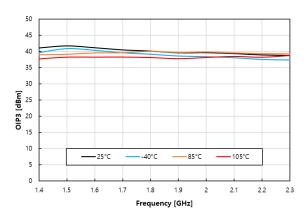
Figure 22. OIP3

: ATT=0dB, Temp, Output=7dBm/tone, 1MHz interval

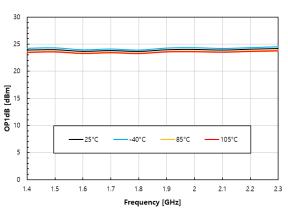





Figure 24. OIP3

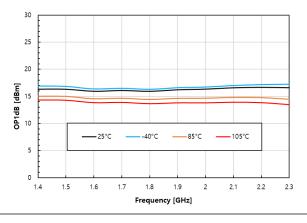
: ATT=20dB, Temp, Input=-20dBm/tone, 1MHz interval



: ATT=10dB, Temp.


Figure 23. OIP3

: ATT=6dB, Temp, Output=7dBm/tone, 1MHz interval


Figure 25. OP1dB

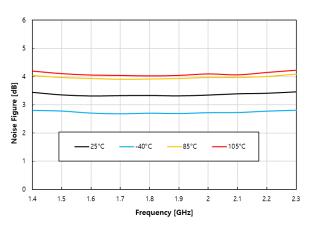
: ATT=0dB (Max Gain), Temp.

Figure 27. OP1dB

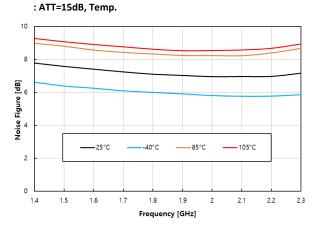
: ATT=20dB, Temp.

•website: <u>www.berex.com</u>

●email: <u>sales@berex.com</u>


1.4 – 2.3GHz

BVA7212


Typical RF Performance - BVA7212 EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 28. NF

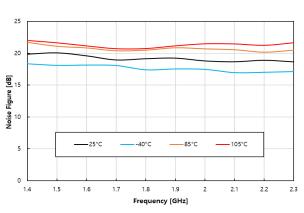


Figure 29. NF

Figure 30. NF

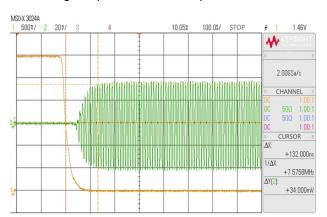

: ATT=29.5dB, Temp.

Figure 32. Power On/Off Time : Falling Time (Control 50% to RF 10%)

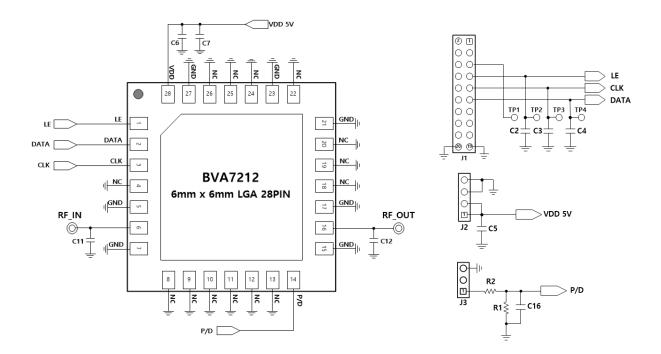
MS0-X 3024A 500\$/ 200 10.10% 50.00%/ STOP 1.46V * 2.00GSa/s CHANNEL 50Ω 1.00: 50Ω CURSOR ΔX: +56.000ns 1/AX +17.857MHz ΔY(2): +33.000mV

Figure 31. Power On/Off Time : Rising Time (Control 50% to RF 90%)

BeRex

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>


BeRex is a trademark of BeRex. All other trademarks are the property of their respective owners. © 2020 BeRex

1.4 – 2.3GHz

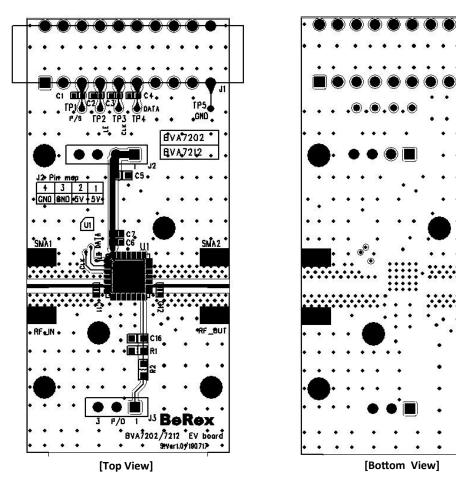
BVA7212

Figure 33. Evaluation Board Schematic

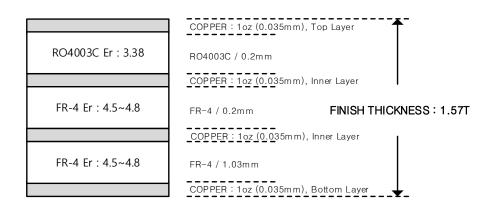
Table 10. Bill of material

No.	Ref. Number	Value	Description	Remark
1	R2	0 ohm	Resistor, 0603, Chip, 5%	Walsin
2	C6	1000 pF	1 nF ±5%, 16V, X7R Ceramic Capacitor (0402)	Murata
3	C7	100 nF	100 nF ±10%, 16V, X7R Ceramic Capacitor (0402)	Murata
4	SMA1	SMA	SMA(F) Connector, PCB Mount, PSF-S01-007	Gigalane
5	SMA2	SMA	SMA(F) Connector, PCB Mount, PSF-S01-007	Gigalane
6	J1	20pin	Receptacle Connector, 5-532955-3, Female, RT/A Dual	AMP Connectors
7	J2	4pin	2.54mm Breakaway Male Header, Straight, Black	
8	J3	3pin	2.54mm Breakaway Male Header, Straight, Black	
9	R1,C1,C2,C3,C4, C5,C11,C12,C16	DNI		

RF Input was matched by Inductor internally. So that it needs DC Blocking Capacitors when DC voltage is presented at RF input port.



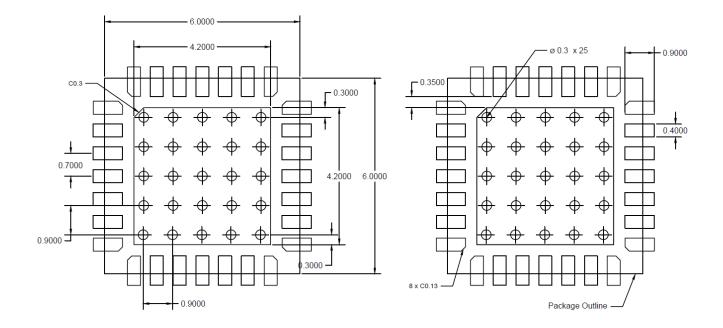
٠


1/4W Flat Gain Digital Variable Gain Amplifier

1.4 – 2.3GHz

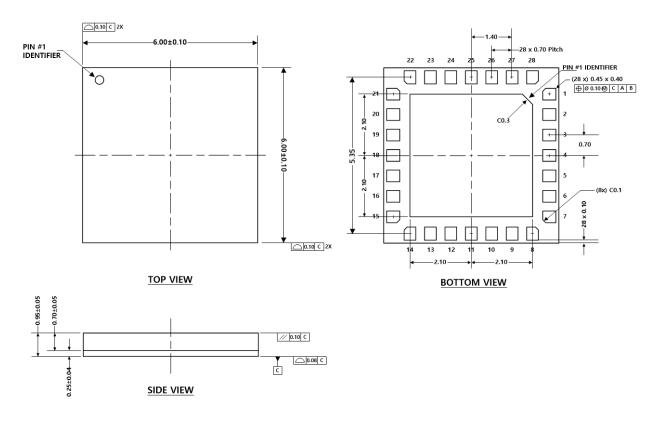
Figure 35. Evaluation Board PCB Layer Information

•website: <u>www.berex.com</u>


Rev. 1.0

1/4W Flat Gain Digital Variable Gain Amplifier

1.4 – 2.3GHz



1.4 – 2.3GHz

BVA7212

Figure 37. Package Outline Dimension

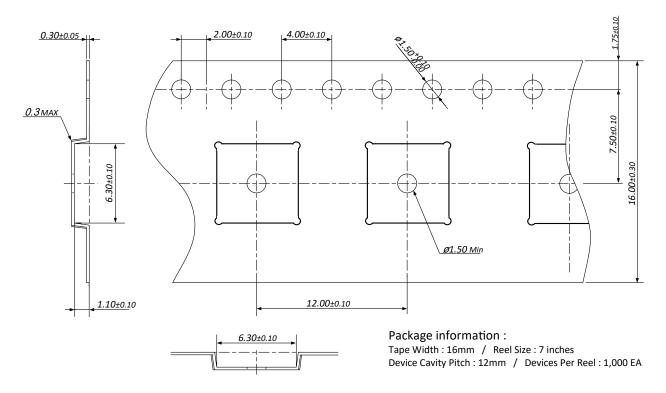
Notes

- 1. All dimensions are in millimeters. Angles are in degrees
- 2. Dimensions and tolerance conform with ASME Y14.5M-1994.

Figure 38. Package Marking Information

• BVA7212 YYWWXXX YY = Year WW = Working Week XXX = Wafer Lot Number

•website: <u>www.berex.com</u>


•email: <u>sales@berex.com</u>

1/4W Flat Gain Digital Variable Gain Amplifier

1.4 – 2.3GHz

Figure 39. Tape and Reel

Rev. 1.0

1.4 – 2.3GHz

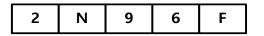
Lead Plating Finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating :	Class 1C
Value :	1000V
Test :	Human Body Model (HBM)
Standard :	JEDEC Standard JS-001-2017
ESD Rating :	Class C5
Value :	1000V
Test :	Charged Device Model (CDM)
Standard :	JEDEC Standard JESD22-C101F
MSL Rating :	MSL3
Standard :	JEDEC Standard J-STD-020



Proper ESD procedures should be followed when handling the device.

RoHS2 Compliance

BVA7212 is compliant with 2011/65/EU RoHS2 directive. (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic equipment.)

NATO GAGE Code :

