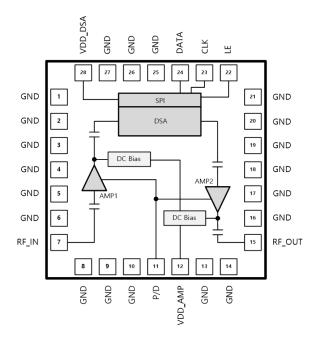


3.0 – 4.2GHz

BVA7242N

Product Description

The BVA7242N is a digitally controlled variable gain amplifier (DVGA) in a 6mm x 6mm LGA package, with a frequency range of 3GHz to 4.2GHz at VDD of 5.0V.


BVA7242N is a high performance and high dynamic range makes it ideally suited for use in 5G/LTE wireless infrastructure and other high performance wireless RF applications.

The BVA7242N is an integration of a high performance digital 7bit step attenuator (DSA) that provides a 31.75 dB attenuation range in 0.25 dB steps and two amplifiers. Two amplifiers in BVA7242N provide high ACP and P1dB.

The BVA7242N digital control interface supports serial programming of the Step attenuator (DSA) and has a power down feature for power savings with Power Down (P/D) mode.

Implementation requires only a few external components, such as matching capacitors on input and output pins. (No need DC Blocking Capacitors when DC voltage is not presented.)

Figure 1. Functional Block Diagram

Figure 2. Package Type

28-pin 6mm x 6 mmx 0.95mm LGA

Device Features

- 28-pin 6mm x 6mm x 0.95mm LGA Package
- Integrated AMP1 + DSA + AMP2
- A Single Voltage Supply : +5.0V / 165mA
- 3.0 4.2GHz Frequency Range
- 33.5dB Gain @ 3.6GHz
- Gain Flatness
- Under 1dB @ 800MBW (3.2 4GHz)
- 1.9dB Noise Figure @ 3.6GHz, max gain setting
- 19.6dBm Output P1dB @ 3.6GHz
 High Output IP3
 - 37.5dBm @3.6GHz, Atten 0dB (Max gain) 33dBm @3.6GHz, Atten 20dB
 - Attenuation: 0 31.75 dB / 0.25 dB step
 - Glitch-less attenuation state during transitions
- High attenuation accuracy ±(0.25dB + 5% x ATT. Setting) @ 3.2-4.2GHz
- Serial Programming Interface only
- Power Down Mode (P/D)
- Lead-free/RoHS2-compliant SiP LGA SMT Package

Application

- 5G/4G/3G wireless Infrastructure
- Small Cells
- Repeaters

•website: www.berex.com

3.0 – 4.2GHz

Table 1. Electrical Specifications

Typical Performance Data @ 25°C and VDD = 5.0V, ATT=0dB state (Max. gain) unless otherwise noted. (De-embedded PCB and connector Loss)

Parameter		Condition	Min	Тур	Max	Unit	
Operational Frequency Range			3		4.2	GHz	
	Gain	Attenuation = 0dB, @ 3.6GHz	31	33.5	36	dB	
		3.2GHz to 4.2GHz		1	1.5	dBpp	
Ga	in Flatness	3GHz to 4.2GHz		1.5	2	dBpp	
Attenuati	ion Control range	0.25dB step			31.75	dB	
Atte	nuation Step			0.25		dB	
Attenuation	3.2GHz to 4GHz	Any bit or bit combination	- (0.25 +5% of ATT. setting)		+ (0.25 +5% of ATT. setting)	dB	
Accuracy	3GHz to 4.2GHz	Any bit or bit combination	- (0.5 +6% of ATT. setting)		+ (0.5 +6% of ATT. setting)	dB	
Return loss	Input Return Loss	Attenuation = 0dB		15		dB	
Return 1033	Output Return Loss	Attenuation - oub	15 10 19.6				
Output Power	for 1dB Compression	Attenuation = 0dB , @ 3.6GHz		19.6		dBm	
		Attenuation = 0dB, @ 3.6GHz Pout= -3dBm/tone \triangle f=100MHz	34	37.5		dBm	
Output Inira	Order Intercept Point	Attenuation = 20dB, @ 3.6GHz Pout= -3dBm/tone \triangle f=100MHz.		33		dBm	
No	bise Figure	Attenuation = 0dB, @ 3.6GHz		1.9		dB	
DSA S	witching time	50% CTRL to 90% or 10% RF		275		ns	
Power Down	(P/D) Switching time	50% CTRL to 90% or 10% RF		150		ns	
ç		VDD_DSA	3.3	5	5.5	V	
Sup	ply voltage	VDD_AMP	4.75	5	5.25	V	
Sup	ply Current	AMP1+DSA+AMP2	135	165	195	mA	
Control Interface		Serial mode		8		Bit	
DSA control Voltage		Digital input high	1.17		3.6	V	
		Digital input low	-0.3		0.6	V	
D/D	antral Valtage	P/D high (Amp Off)	0.8		5	V	
P/D CC	ontrol Voltage	P/D low (Amp On)	0		0.5	v	
In	npedance			50		Ω	

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

Specifications and information are subject to change without notice.

3.0 – 4.2GHz

BVA7242N

Table 2. Typical RF Performance¹

Parameter			Frequency	Frequency		
Frequency	3	3.2	3.6	4	4.2	GHz
Gain	32.3	33.2	33.5	32.9	32	dB
S11	-9.4	-13.5	-21.9	-24.0	-21.3	dB
522	-5.8	-8.2	-16.9	-16.4	-11.2	dB
OIP3 ² (Max Gain, ATT=0dB)	36.9	37.2	37.5	37.5	35.9	dBm
OIP3 ² (ATT=20dB)	32.1	33.1	33	31.7	30	dBm
OP1dB	19.4	19.5	19.6	19.2	18.9	dBm
N.F (Max Gain, ATT=0dB)	1.8	1.8	1.9	1.9	2.2	dB
N.F (ATT=20dB)	7	6.9	7.1	7.8	8.4	dB

¹ Device performance measured on a BeRex evaluation board at 25°C, VDD=+5.0V, 50 Ω system. measure on Evaluation Board De-embedded PCB and Connector Loss.

 $^{\mathbf{2}}$ OIP3 measured with two tones at an output of $\,$ -3dBm per tone separated by 100MHz.

Table 3. Absolute Maximum Ratings¹

Parameter	Min	Тур	Max	Unit
Supply Voltage (VDD)	-0.3		5.5	V
Supply Current			380	mA
Digital input voltage	-0.3		3.6	V
Maximum input power			+10	dBm
Storage Temperature	-55		+150	°C
Junction Temperature			+165	°C

¹ Operation of this device above any of these parameters may result in permanent damage.

Table 4. Recommended Operating Conditions¹

Parameter	Min	Тур	Max	Unit
Frequency Range	3		4.2	GHz
Supply Voltage (VDD)	4.75	5	5.25	V
Operating Temperature	-40		+105	°C
R _{τH} (θ _{JC})		26		°C/W

¹ Specifications are not guaranteed over all recommended operating conditions

•website: <u>www.berex.com</u>

•email: sales@berex.com

3.0 – 4.2GHz

BVA7242N

Programming Option

Programming Mode

The BVA7242N is only operating in Serial Mode.

Serial Interface

The Serial interface is an 8-bit Serial-In, Parallel-Out shift register buffered by a transparent latch. The 8-bits make up the Attenuation Word that controls the DSA. Figure 4 illustrates an example timing diagram for a programming state.

The Serial interface is controlled by using three CMOS compatible signals: SI (DATA), Clock (CLK) and LE. The SI and CLK inputs allow data to be serially entered into the shift register. Serial data is clocked in LSB first.

The shift register must be loaded while LE is held LOW to prevent the attenuator value from changing as data is entered. The LE input should then be toggled HIGH and brought LOW again, latching the new data into the DSA. The Attenuation Word truth table is listed in Table 5. A programming example of the serial register is illustrated in Figure 3. The Serial timing diagram is illustrated in Figure 4.

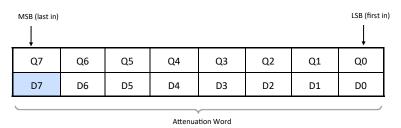

	Attenuation Word								
D7 (MSB)	D6	D5	D4	D3	D2	D1	D0 (LSB)	Attenuation setting	
L	L	L	L	L	L	L	L	Max. Gain	
L	L	L	L	L	L	L	Н	0.25 dB	
L	L	L	L	L	L	Η	L	0.5 dB	
L	L	L	L	L	н	L	L	1 dB	
L	L	L	L	н	L	L	L	2 dB	
L	L	L	н	L	L	L	L	4 dB	
L	L	Н	L	L	L	L	L	8 dB	
L	н	L	L	L	L	L	L	16 dB	
L	Н	Н	н	н	Н	Н	Н	31.75 dB	

Table 5. Serial Attenuation word Truth Table

Power-up Control Settings

The BVA7242N will be always initialized to the max. attenuation setting (Atten=31.75dB) on power-up sequence and will remain at the max. attenuation setting until user latches the next programming word.

Figure 3. Serial Register Map

Bit must be set to logic low

The attenuation word is derived directly from the value of the attenuation state. To find the attenuation word, multiply the value of the state by four, then convert to binary.

For example, to program the 12.5dB state;

 $4 \times 12.5 = 50$ $50 \rightarrow 00110010$

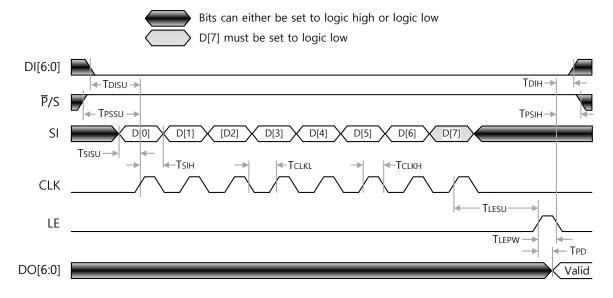
Serial Input : 00110010

Glitch-less Attenuation State Transitions

The BVA7242N features a novel architecture to provide the best-in-class glitch-less transition behavior when changing attenuation states. When RF input power is applied, the output power spikes are greatly reduced (≤ 0.3 dB) during attenuation state changes when comparing to previous generations of DSAs.

BeRex

•website: <u>www.berex.com</u>


Specifications and information are subject to change without notice.

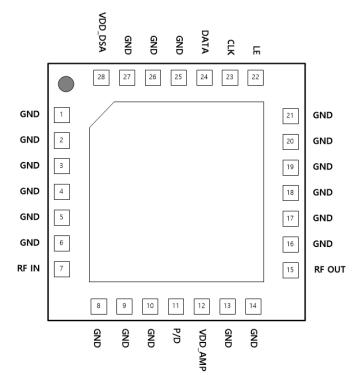
Flat Gain Digital Variable Gain Amplifier

3.0 – 4.2GHz

Figure 4. Serial Interface Timing Diagram

Table 6. Serial Interface AC Characteristics

VDD = 5.0V with DSA only, -40°C \leq TA \leq 105°C, unless otherwise specified


Symbol	Parameter	Min	Max	Unit
FCLK	Serial data clock frequency		10	MHz
Тсікн	Serial clock HIGH time	30		ns
TCLKL	Serial clock LOW time	30		ns
TLESU	Last Serial clock rising edge setup time to Latch Enable rising edge	10		ns
TLEPW	Latch Enable minimum pulse width	30		ns
Tsisu	Serial data setup time	10		ns
Тѕін	Serial data hold time	10		ns
TDISU	Parallel data setup time	100		ns
Тон	Parallel data hold time	100		ns
TPSSU	Parallel / Serial setup time	100		ns
TPSIH	Parallel / Serial hold time	100		ns
TASU	Address setup time	100		ns
Тан	Address hold time	100		ns
TPD	Digital register delay (internal)		10	ns

3.0 – 4.2GHz

BVA7242N

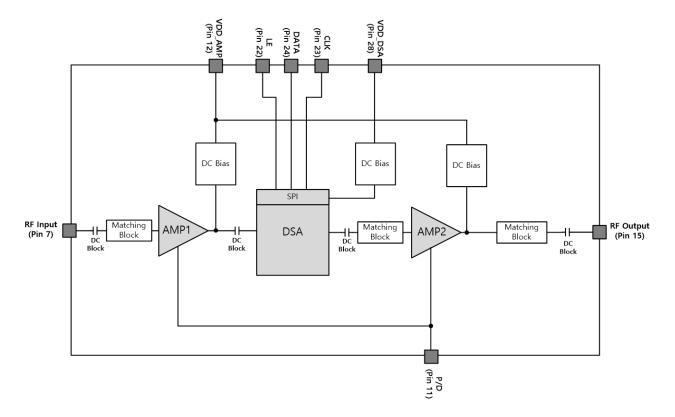
Figure 5. Pin Configuration

Table 7. Pin Description

Pin	Pin name	Description
1-6, 8-10, 13-14, 16-21, 25-27	GND	RF/DC Ground
7	RF IN	RF Input, matched to 50 ohm. Internally DC blocked.
11	P/D	VDD Power Down control Input. With Logic High(0.8 to 5V), Amplifier is Disabled. With Logic Low(0 to 0.5V), Amplifier is Enabled.
12	VDD_AMP	Supply Voltage to Amplifier (AMP1 and AMP2). This pin is connected internally to bypass capacitors followed by inductor inside the module.
15	RF OUT	RF output, matched to 50 ohm. Internally DC blocked.
22	LE	Serial Latch Enable Input. When LE is high, latch is clear and content of SPI control the attenuator. When LE is low, data in SPI is latched.
23	CLK	Serial Clock Input.
24	DATA	Serial Data Input. The data and clock pins allow the data to be entered serially into SPI and is inde- pendent of Latch state.
28	VDD_DSA	SPI and DSA DC supply. This pin is connected to bypass capacitor internally.
Exposed Pad	GND	RF/DC Ground

•website: <u>www.berex.com</u>

•email: <u>sales@berex.com</u>

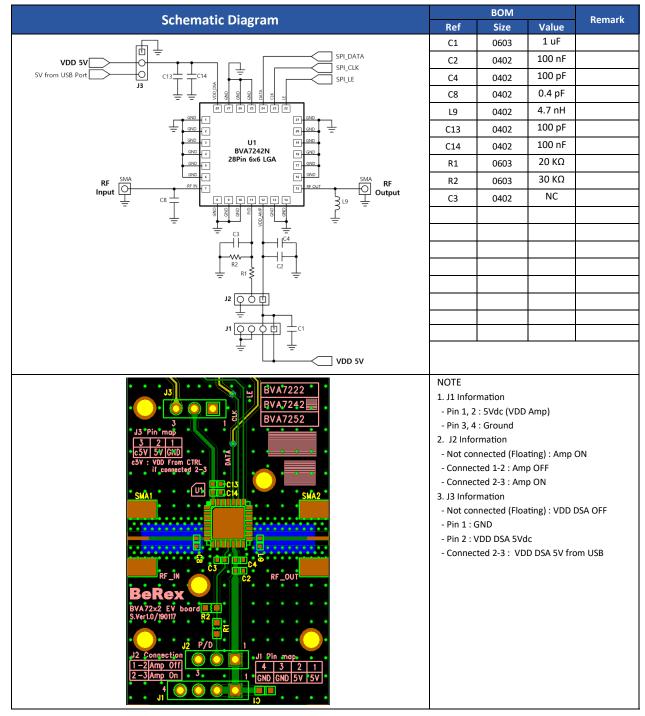

Flat Gain Digital Variable Gain Amplifier

3.0 – 4.2GHz

Figure 6. Internal Function Block Diagram

The BVA7242N is integrated two gain blocks (AMP1, AMP2) and one digital step attenuator (DSA). Additionally, the BVA7242N includes an internal bias circuits and RF Matching to improve the RF performances at 3GHz - 4.2GHz.

The block diagram of BVA7242N is shown below.


Flat Gain Digital Variable Gain Amplifier

3.0 – 4.2GHz

Typical RF Performance - BVA7242N EVK - PCB

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted .

Table 8. Application Circuit

•email: <u>sales@berex.com</u>

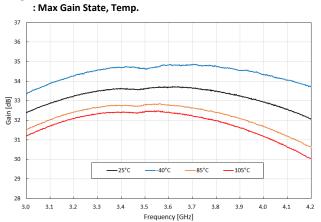
Rev. 1.0

Flat Gain Digital Variable Gain Amplifier

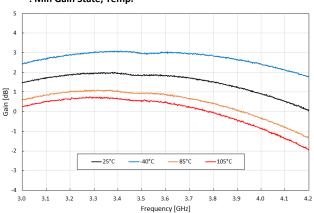
3.0 – 4.2GHz

Typical RF Performance - BVA7242N EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)


Table 9. Typical Performance by Temperature: 3.6GHz

/1		•			
Parameter		Typical Values			
Temperature	-40	25	85	105	°C
VDD	5	5	5	5	Vdc
Current	173	165	156	152	mA
Gain	34.8	33.5	32.7	32.3	dB
S11	-25	-21.5	-27.7	-27.5	dB
S22	-16.3	-16.5	-18.1	-17.8	dB
OIP3 ¹	37.2	37.5	37.2	37.1	dBm
OP1dB	19.3	19.6	20.1	19.9	dBm
Noise Figure	1.4	1.9	2.3	2.5	dB


 1 OIP3 measured with two tones at an output of –3dBm per tone separated by 100MHz. $^{-}$

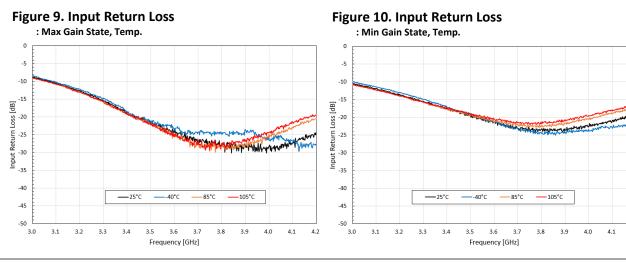
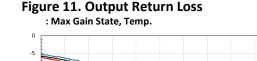

 ${\bf ^2}$ Above test parameters are measured at Max Gain State (ATT=0dB)

Figure 7. Gain Flatness

•website: <u>www.berex.com</u>

email: <u>sales@berex.com</u>

4.2



3.0 – 4.2GHz

BVA7242N

Typical RF Performance - BVA7242N EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

-25°C

-40°C

3.5

3.6

Frequency [GHz]

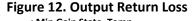
85°C

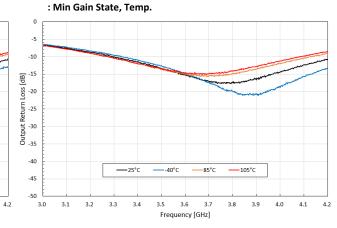
3.7

-105°C

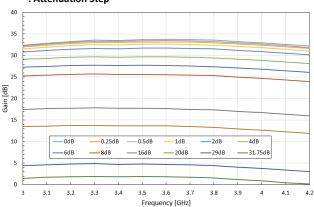
3.8 3.9 4.0 4.1

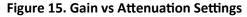
-10


-15 -20 -25


+10 -30 -35 -40

-45


-50


3.0 3.1 3.2 3.3 3.4

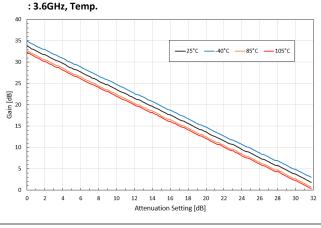
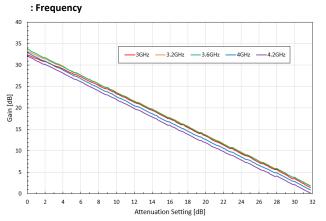


Figure 13. Gain vs Frequency : Attenuation Step



BeRex

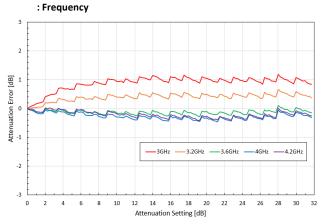
•website: <u>www.berex.com</u>

•email: sales@berex.com

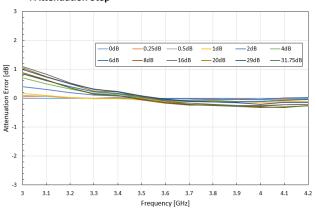
Figure 14. Gain vs Attenuation Settings

3.0 – 4.2GHz

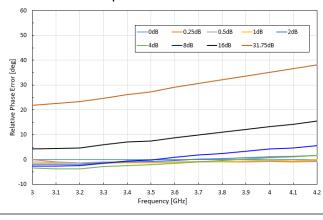
BVA7242N

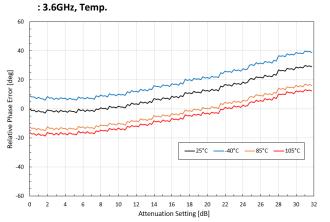

Typical RF Performance - BVA7242N EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)


Figure 16. Attenuation Error

: 3.6GHz, Temp. 2 —25°C — -40°C -85°C -105°C Attenuation Error [dB] -2 -3 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Attenuation Setting [dB]

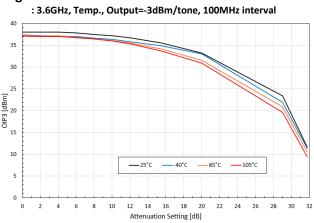

Figure 17. Attenuation Error



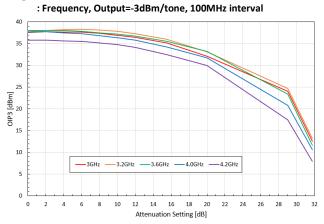
•website: <u>www.berex.com</u>

•email: sales@berex.com

Figure 19. Relative Phase Error


3.0 – 4.2GHz

BVA7242N


Typical RF Performance - BVA7242N EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

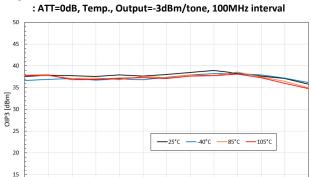

Figure 21. OIP3

Figure 22. OIP3

Figure 23. OIP3

Frequency [GHz]

Figure 24. 2nd Harmonics

: ATT=0dB, Temp., Input=-20dBm (Output=13.5dBm)

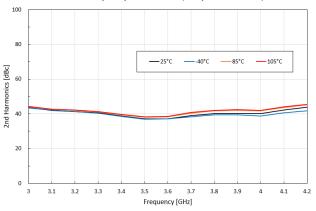


Figure 25. 2nd Harmonics Figure 26. 3rd Harmonics : ATT = 0dB(Max Gain), Input=-20dBm (Output=13.5dBm) : Attenuation Step, Input=-20dBm 140 100 120 80 _____25°C _____40°C ____85°C ____105°C 100 2nd Harmonics [dBc] 3rd Harmonics [dBc] 60 80 60 40 40 -ATT=0dB 20 ATT=15dB 20 ATT=31.75dB 0 4.1 3.1 3.4 3.5 3.6 3.7 3.8 3.9 4 4.2 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2 3 3.2 3.3 Frequency [GHz] Frequency [GHz]

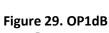
BeRex

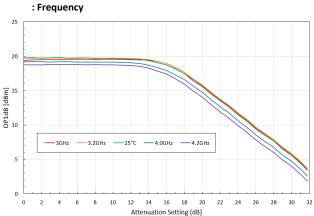
10

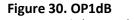
3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2

email: <u>sales@berex.com</u>

Specifications and information are subject to change without notice.

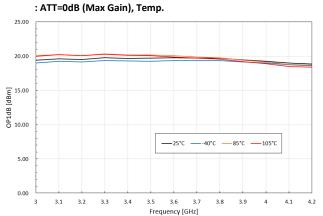

3.0 – 4.2GHz

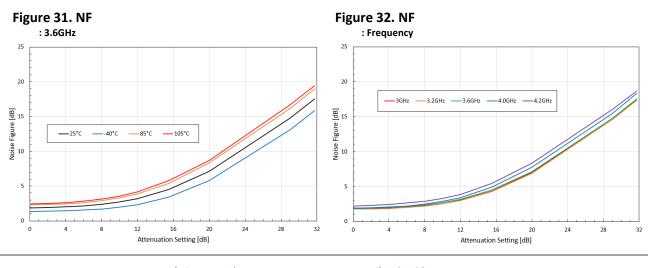

BVA7242N


Typical RF Performance - BVA7242N EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

Figure 27. 3rd Harmonics Figure 28. OP1dB : Attenuation Step, Input=-20dBm : 3.6GHz, Temp. 140 25 120 20 100 3rd Harmonics [dBc] [mgp] 15 80 0P1dB [60 ATT=0dB 40 ATT=15dB ATT=31.75dB 5 20 0 0 3.1 3.2 3.3 3.6 3.7 3.8 3.4 3.5 3.9 4.1 4 4.2 0 2 Frequency [GHz]




4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

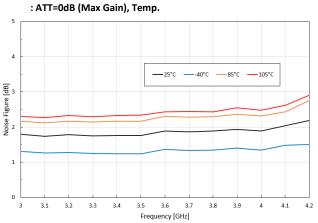
-25°C

-40°C

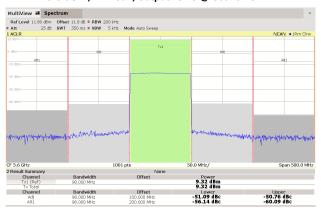
Attenuation Setting [dB]

BeRex

•email: sales@berex.com


Flat Gain Digital Variable Gain Amplifier

3.0 – 4.2GHz


Typical RF Performance - BVA7242N EVK

Typical Performance @ 25°C and VDD = 5.0V unless otherwise noted. (All data de-embedded PCB and Connector Loss)

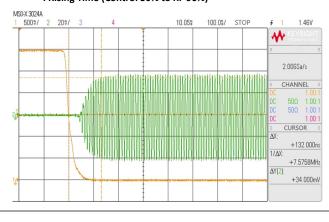

Figure 33. NF

Figure 35. ACLR @ 5G NR, 100MBW : Fc=3.6GHz, ATT=0dB, Output Power@-50dBc ACLR

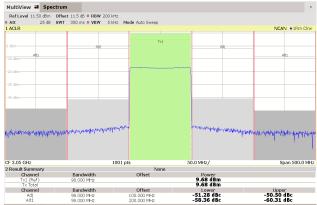
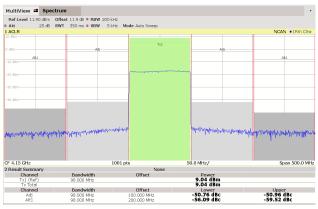
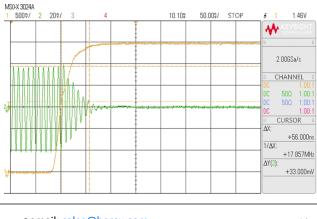


Figure 37. Power On/Off Time : Rising Time (Control 50% to RF 90%)


Figure 34. ACLR @ 5G NR, 100MBW

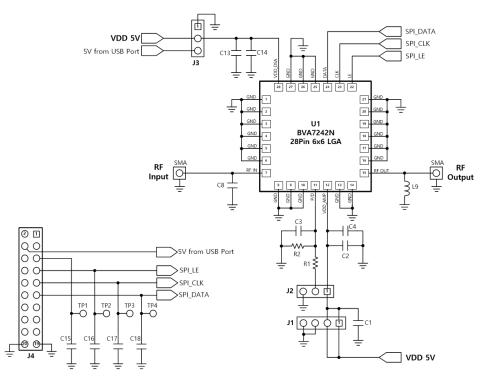
: Fc=3.05GHz, ATT=0dB, Output Power@-50dBc ACLR


Figure 36. ACLR @ 5G NR, 100MBW

: Fc=4.15GHz, ATT=0dB, Output Power@-50dBc ACLR

Figure 38. Power On/Off Time

: Falling Time (Control 50% to RF 10%)



Flat Gain Digital Variable Gain Amplifier

3.0 – 4.2GHz

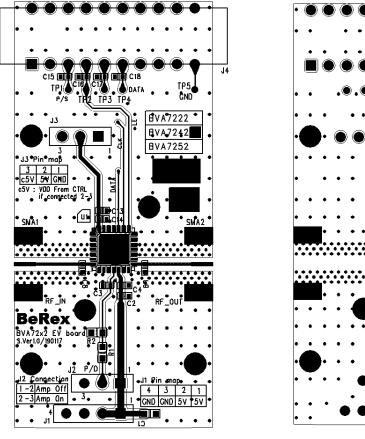
Figure 39. Evaluation Board Schematic

Table 10. Bill of material

No.	Ref. Number	Value	Description	Manufacturer
1	R1	20 Kohm	Resistor, 0603, Chip, 5%	Walsin
2	R2	30 Kohm	Resistor, 0603, Chip, 5%	Walsin
3	C1	1 uF	Capacitor, 0603, Chip, 5%	Murata
4	C2	100 nF	Capacitor, 0402, Chip, 5%	Murata
5	C3	100 pF	Capacitor, 0402, Chip, 5%	Murata
6	C4	100 pF	Capacitor, 0402, Chip, 5%	Murata
7	C8	0.4 pF	Capacitor, 0402, Chip, 5%	Murata
8	L9	4.7 nH	Inductor, 0402, Chip, 5%	Murata
9	C13	100 nF	Capacitor, 0402, Chip, 5%	Murata
10	C14	100 pF	Capacitor, 0402, Chip, 5%	Murata
11	SMA1	SMA	SMA(F) Connector, PCB Mount, PSF-S01-007	Gigalane
12	SMA2	SMA	SMA(F) Connector, PCB Mount, PSF-S01-007	Gigalane
13	J1	4pin	2.54mm Breakaway Male Header, Straight, Black	
14	J2	3pin	2.54mm Breakaway Male Header, Straight, Black	
15	J3	3pin	2.54mm Breakaway Male Header, Straight, Black	
16	J4	20pin	Receptacle Connector, 5-532955-3, Female,RT/A Dual	AMP Connectors
17	C15,C16,C17,C18	DNI	Not connected	

•website: <u>www.berex.com</u>

•email: sales@berex.com


Rev. 1.0

BVA7242N

3.0 - 4.2GHz

Figure 40. Evaluation Board Layout

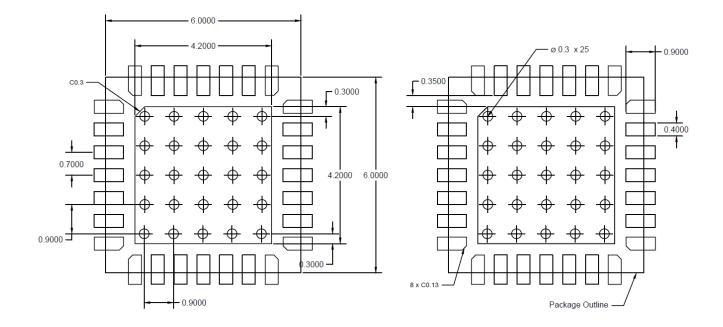
[Top View]

Bottom View]

Figure 41. Evaluation Board PCB Layer Information

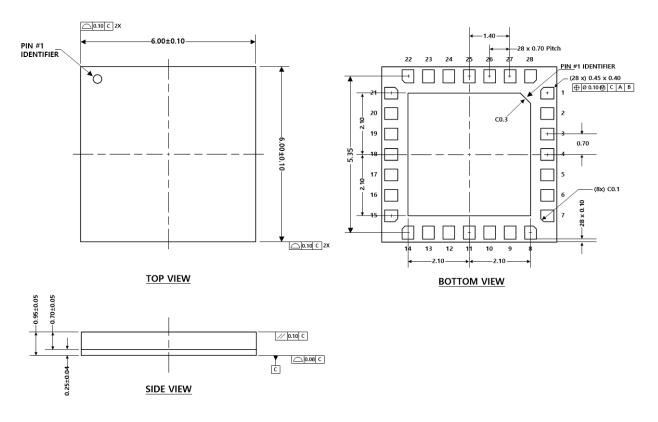
	COPPER : 1oz (0.035mm), Top Layer
RO4003C Er : 3.38	RO4003C / 0.305mm
	COPPER : 1oz (0.035mm), Inner Layer
FR-4 Er : 4.5~4.8	FR-4 / 0.36mm FINISH THICKNESS : 1.55T
	COPPER : 1oz (0.035mm), Inner Layer
FR-4 Er : 4.5~4.8	FR-4 / 0.73mm
	COPPER : 1oz (0.035mm), Bottom Layer

•website: <u>www.berex.com</u>


Rev. 1.0

Flat Gain Digital Variable Gain Amplifier

3.0 – 4.2GHz



3.0 – 4.2GHz

Figure 43. Package Outline Dimension

Flat Gain Digital Variable Gain Amplifier

Notes

BeRex

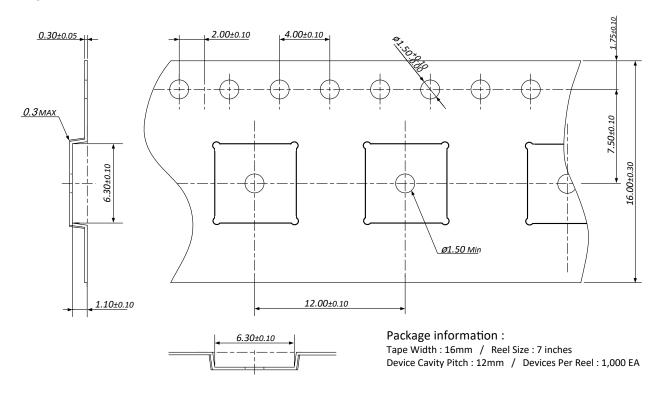
1. All dimensions are in millimeters. Angles are in degrees

2. Dimensions and tolerance conform with ASME Y14.5M-1994.

Figure 44. Package Marking Information

• BVA7242N YYWWXX YY = Year WW = Working Week XX = Wafer Lot Number

•website: www.berex.com


•email: sales@berex.com

Flat Gain Digital Variable Gain Amplifier

3.0 – 4.2GHz

Figure 45. Tape and Reel

3.0 – 4.2GHz

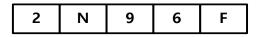
Lead Plating Finish

100% Tin Matte finish

(All BeRex products undergoes a 1 hour, 150 degree C, Anneal bake to eliminate thin whisker growth concerns.)

MSL / ESD Rating

ESD Rating :	Class 1C
Value :	1000V
Test :	Human Body Model (HBM)
Standard :	JEDEC Standard JS-001-2017
ESD Rating :	Class C5
Value :	1000V
Test :	Charged Device Model (CDM)
Standard :	JEDEC Standard JESD22-C101F
MSL Rating: Standard:	MSL3 at +265°C convection reflow JEDEC Standard J-STD-020



Proper ESD procedures should be followed when handling the device.

RoHS2 Compliance

BVA7242N is compliant with 2011/65/EU RoHS2 directive. (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic equipment.)

NATO GAGE Code :

